Skip to main content

Oligodendroglioma clinical trials at University of California Health

5 in progress, 0 open to eligible people

Showing trials for
  • Varlilumab and IMA950 Vaccine Plus Poly-ICLC in Patients With WHO Grade II Low-Grade Glioma (LGG)

    Sorry, in progress, not accepting new patients

    This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.

    at UCSF

  • Dendritic Cell Vaccine for Patients With Brain Tumors

    Sorry, in progress, not accepting new patients

    The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

    at UCLA

  • Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Neo-adjuvant Evaluation of Glioma Lysate Vaccines in WHO Grade II Glioma

    Sorry, in progress, not accepting new patients

    This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.

    at UCSF

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    at UCLA UCSF

Our lead scientists for Oligodendroglioma research studies include .

Last updated: