Skip to main content

Mucinous Adenocarcinoma clinical trials at University of California Health

6 in progress, 0 open to eligible people

Showing trials for
  • Carboplatin, Paclitaxel and Gemcitabine Hydrochloride With or Without Bevacizumab After Surgery in Treating Patients With Recurrent Ovarian, Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies carboplatin, paclitaxel and gemcitabine hydrochloride when given together with or without bevacizumab after surgery to see how well it works in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer that has come back. Drugs used in chemotherapy, such as carboplatin, paclitaxel and gemcitabine hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective when given with or without bevacizumab after surgery in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer.

    at UC Irvine UCLA UCSD UCSF

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    Sorry, in progress, not accepting new patients

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    at UC Davis UC Irvine UCSD

  • Oxaliplatin, Leucovorin Calcium, and Fluorouracil With or Without Bevacizumab in Treating Patients Who Have Undergone Surgery for Stage II Colon Cancer

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies oxaliplatin, leucovorin calcium, fluorouracil, and bevacizumab to see how well they work compared to oxaliplatin, leucovorin calcium, and fluorouracil in treating patients who have undergone surgery for stage II colon cancer. Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving combination chemotherapy together with bevacizumab is more effective than combination chemotherapy alone in treating colon cancer.

    at UC Davis UCSD UCSF

  • Paclitaxel and Carboplatin With or Without Bevacizumab in Treating Patients With Stage II, Stage III, or Stage IV Ovarian Epithelial Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer

    Sorry, in progress, not accepting new patients

    This phase III clinical trial studies two different dose schedules of paclitaxel to see how well they work in combination with carboplatin with or without bevacizumab in treating patients with stage II, III or IV ovarian epithelial cancer, primary peritoneal cancer, or fallopian tube cancer. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a type of drug called a monoclonal antibody and blocks tumor growth by stopping the growth of blood vessels that tumors need to grow. It is not yet known whether giving paclitaxel with combination chemotherapy once every three weeks is more effective than giving paclitaxel once a week in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.

    at UC Davis UCLA UCSD UCSF

  • Radiation Therapy With or Without Cisplatin in Treating Patients With Recurrent Endometrial Cancer

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies radiation therapy and cisplatin to see how well they work compared with radiation therapy alone in treating patients with endometrial cancer that has come back. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving radiation therapy together with cisplatin is more effective than radiation therapy alone in treating patients with endometrial cancer.

    at UC Davis UC Irvine UCLA UCSD

  • Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.

    at UC Davis UC Irvine

Last updated: