Skip to main content

Acute Lung Injury clinical trials at University of California Health

7 in progress, 3 open to eligible people

Showing trials for
  • Add-on Reparixin in Adult Patients With ARDS

    open to eligible people ages 18 years and up

    Study objectives 1. To characterize the efficacy of reparixin in ameliorating lung injury and systemic inflammation and expediting clinical recovery and liberation from mechanical ventilation in adult patients with moderate to severe ARDS (PaO2/FIO2 ratio ≤ 200). 2. To evaluate the safety of reparixin vs. placebo in patients enrolled in the study.

    at UC Davis UC Irvine

  • Extracellular Vesicle Treatment for Acute Respiratory Distress Syndrome (ARDS) (EXTINGUISH ARDS)

    open to eligible people ages 18-75

    To evaluate the safety and efficacy of intravenous (IV) administration of bone marrow mesenchymal stem cell derived extracellular vesicles (EVs), ExoFlo, versus placebo for the treatment of hospitalized patients with moderate-to-severe Acute Respiratory Distress Syndrome (ARDS).

    at UCSF

  • Point-of-care Lung Ultrasound (POCUS)-Integrated Study of Admitted Patients With COVID-19

    open to eligible people ages 18 years and up

    This study seeks to define the ultrasound profile of patients with COVID-19, and document the progression of these ultrasound findings to develop prognostication and clinical decision instruments that can help guide management of patient with COVID-19. Primary aims include the development of ARDS, refractory hypoxemia, acute cardiac injury, pulmonary embolism, pneumothorax or death. Secondary aims include potential change in CT and plain film utilization given the use of POCUS, as well as emergency department and inpatient LOS (length of stay).

    at UCLA

  • Biomarkers, Genomics, Physiology in Critically Ill and ECMO Patients

    Sorry, in progress, not accepting new patients

    Patients in end-stage cardiac failure and/or respiratory failure may be started on a rescue therapy known as Extracorporeal Membrane Oxygenation (ECMO). One of the major clinical questions is how to manage the ventilator when patients are on ECMO therapy. Ventilator Induced Lung Injury (VILI) can result from aggressive ventilation of the lung during critical illness. VILI and lung injury such as Acute Respiratory Distress Syndrome (ARDS) can further increase the total body inflammation and stress, this is known as biotrauma. Biotrauma is one of the mechanisms that causes multi-organ failure in critically ill patients. One advantage of ECMO is the ability to greatly reduce the use of the ventilator and thus VILI by taking control of the patient's oxygenation and acid-base status. By minimizing VILI during ECMO we can reduce biotrauma and thus multi-organ failure. Since the optimal ventilator settings for ECMO patients are not known, we plan to study the impact of different ventilator settings during ECMO on patient's physiology and biomarkers of inflammation and injury.

    at UCSD

  • PROSpect: Prone and Oscillation Pediatric Clinical Trial

    Sorry, accepting new patients by invitation only

    Severe pediatric acute respiratory distress syndrome (PARDS) is a life-threatening and frequent problem experienced by thousands of children each year. Little evidence supports current supportive practices during their critical illness. The overall objective of this study is to identify the best positional and/or ventilation practice that leads to improved patient outcomes in these critically ill children. We hypothesize that children with high moderate-severe PARDS treated with either prone positioning or high-frequency oscillatory ventilation (HFOV) will demonstrate more days off the ventilator when compared to children treated with supine positioning or conventional mechanical ventilation (CMV).

    at UCSF

  • VQm PHM on Pulmonary Health Parameters for ICU

    Sorry, not yet accepting patients

    The goal of this observational study is to compare pulmonary health parameter measurements from the VQm PHM™ to existing clinical measurements. The main questions it aims to answer are: - Confirm the performance of non-invasive pulmonary health parameter shunt fraction value found on the VQm PHM™ when compared to available reference measurements. - Confirm the performance of non-invasive pulmonary health parameter pulmonary blood flow, functional residual capacity and physiological dead space found on the VQm PHM™ when compared to available reference measurements.

    at UC Davis

  • Ventilation and Perfusion in the Respiratory System

    Sorry, accepting new patients by invitation only

    Respiratory failure occurs when the lung fails to perform one or both of its roles in gas exchange; oxygenation and/or ventilation. Presentations of respiratory failure can be mild requiring supplemental oxygen via nasal cannula to more severe requiring invasive mechanical ventilation as see in acute respiratory distress syndrome (ARDS).It is important to provide supportive care through noninvasive respiratory support devices but also to minimize risk associated with those supportive devices such as ventilator induced lung injury (VILI) and/or patient self-inflicted lung injury (P-SILI). Central to risk minimization is decreasing mechanical stress and strain and optimizing transpulmonary pressure or the distending pressure across the lung, minimizing overdistention and collapse. Patient positioning impacts ventilation/perfusion and transpulmonary pressure. Electrical impedance tomography (EIT) is an emerging technology that offers a noninvasive, real-time, radiation free method to assess distribution of ventilation at the bedside. The investigators plan to obtain observational data regarding distribution of ventilation during routine standard of care in the ICU, with special emphasis on postural changes and effects of neuromuscular blockade, to provide insight into ventilation/perfusion matching, lung mechanics in respiratory failure, other pulmonary pathological processes.

    at UCSD

Our lead scientists for Acute Lung Injury research studies include .

Last updated: