Critical Illness clinical trials at University of California Health
2 in progress, 1 open to eligible people
Pediatric Prehospital Airway Resuscitation Trial
open to eligible people ages up to 17 years
This study is a Phase 3, multi-center, Bayesian Adaptive Sequential Platform Trial testing the effectiveness of different prehospital airway management strategies in the care of critically ill children. Emergency Medical Services (EMS) agencies affiliated with the Pediatric Emergency Care Applied Research Network (PECARN) will participate in the trial. The study interventions are strategies of prehospital airway management: [BVM-only], [BVM followed by SGA] and [BVM followed by ETI]. The primary outcome is 30-day ICU-free survival. The trial will be organized and executed in two successive stages. In Stage I of the trial, EMS personnel will alternate between two strategies: [BVM-only] or [BVM followed by SGA]. The [winner of Stage I] will advance to Stage II based upon results of Bayesian interim analyses. In Stage II of the trial, EMS personnel will alternate between [BVM followed by ETI] vs. [Winner of Stage I].
at UC Davis UCLA
Biomarkers, Genomics, Physiology in Critically Ill and ECMO Patients
Sorry, in progress, not accepting new patients
Patients in end-stage cardiac failure and/or respiratory failure may be started on a rescue therapy known as Extracorporeal Membrane Oxygenation (ECMO). One of the major clinical questions is how to manage the ventilator when patients are on ECMO therapy. Ventilator Induced Lung Injury (VILI) can result from aggressive ventilation of the lung during critical illness. VILI and lung injury such as Acute Respiratory Distress Syndrome (ARDS) can further increase the total body inflammation and stress, this is known as biotrauma. Biotrauma is one of the mechanisms that causes multi-organ failure in critically ill patients. One advantage of ECMO is the ability to greatly reduce the use of the ventilator and thus VILI by taking control of the patient's oxygenation and acid-base status. By minimizing VILI during ECMO we can reduce biotrauma and thus multi-organ failure. Since the optimal ventilator settings for ECMO patients are not known, we plan to study the impact of different ventilator settings during ECMO on patient's physiology and biomarkers of inflammation and injury.
at UCSD
Our lead scientists for Critical Illness research studies include Robert L Owens, MD.
Last updated: