Dysautonomia clinical trials at University of California Health
2 in progress, 1 open to eligible people
Blood Pressure Effects on Cognition and Brain Blood Flow in PD
open to eligible people ages 50 years and up
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Besides causing symptoms that impair movement, PD also causes non-motor symptoms, such as problems thinking and orthostatic hypotension (OH), i.e., low blood pressure (BP) when standing. About one-third of people with PD have OH, which can cause sudden, temporary symptoms while upright, including lightheadedness, dizziness, and fainting. People with PD and OH can also experience problems thinking that happen only while upright and not while sitting - this can occur without other symptoms, such as feeling dizzy or faint. However, the level of low BP that can affect thinking remains unknown, and no guidelines exist for treating OH when it happens without symptoms. This is significant because OH could be a treatable risk factor for thinking problems in PD, but OH is often not treated if people do not report obvious symptoms. This project's goal is to determine how BP affects brain function in PD. The proposed experiments will measure BP and brain blood flow continuously in real-time using innovative wearable technology. Persons with PD with OH and without OH will undergo repeated cognitive tests while supine (lying down) and while upright. I will study the associations between BP, thinking abilities, and brain blood flow, and will compare groups with and without OH. These findings could be important because if a certain level of BP correlates with thinking abilities, then treating OH in PD may prevent thinking problems, which would improve health-related quality of life and reduce disability and healthcare costs.
at UCSD
Personalized Brain Stimulation to Treat Chronic Concussive Symptoms
Sorry, not yet accepting patients
The goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: 1. Does personalized TMS improve brain connectivity after concussion? 2. Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? 3. Do the improvements last up to 2 months post-treatment? 4. Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): 1. One for the baseline symptom assessments and magnetic resonance imaging (MRI) 2. Ten for TMS administration 3. Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.
at UCLA
Our lead scientists for Dysautonomia research studies include Kevin Bickart, MD/PhD Katherine Longardner, MD.
Last updated: