Skip to main content

Hematopoietic and Lymphatic System Neoplasm clinical trials at University of California Health

5 in progress, 3 open to eligible people

Showing trials for
  • Testing the Combination of the Anti-Cancer Drugs Temozolomide and M1774 to Evaluate Their Safety and Effectiveness

    open to eligible people ages 18 years and up

    This phase I/II trial studies the side effects and best dose of temozolomide and M1774 and how well they works in treating patients with cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and may have spread to nearby tissue, lymph nodes, or distant parts of the body (advanced). Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill tumor cells and slow down or stop tumor growth. M1774 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Adding M1774 to temozolomide may shrink or stabilize cancer for longer than temozolomide alone.

    at UCSD

  • Web-Based Physical Activity Intervention in Improving Long Term Health in Children and Adolescents With Cancer

    open to eligible people ages 8-16

    This randomized clinical phase III trial studies how well web-based physical activity intervention works in improving long term health in children and adolescents with cancer. Regular physical activity after receiving treatment for cancer may help to maintain a healthy weight and improve energy levels and overall health.

    at UC Davis UCLA UCSF

  • Immunologic Response Following COVID-19 Vaccination in Children, Adolescents, and Young Adults With Cancer

    open to eligible people ages 6 months to 37 years

    This study evaluates immunologic response following COVID-19 vaccination in children, adolescents, and young adults with cancer. Vaccines work by stimulating the body's immune cells to respond against a specific disease. The immune response produces protection from that disease. Effects from cancer and from treatments for cancer can reduce the body's natural disease fighting ability (called immunity). Factors such as vaccine type, timing of vaccine dosing related to treatment for cancer and number of vaccine doses or "boosts" (extra vaccine shots) may strengthen or diminish the body's protective immune response. This study may help researchers learn more about how the body's immune system responds to the COVID-19 vaccine when the vaccination is given during or after cancer treatment.

    at UCSF

  • Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

    Sorry, in progress, not accepting new patients

    This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

    at UC Davis UCLA UCSF

  • NCI COVID-19 in Cancer Patients, NCCAPS Study

    Sorry, in progress, not accepting new patients

    This study collects blood samples, medical information, and medical images from patients who are being treated for cancer and have a positive test for SARS CoV-2, the new coronavirus that causes the disease called COVID-19. Collecting blood samples, medical information, and medical images may help researchers determine how COVID-19 affects the outcomes of patients undergoing cancer treatment and how having cancer affects COVID-19.

    at UC Davis UC Irvine UCLA UCSD UCSF

Our lead scientists for Hematopoietic and Lymphatic System Neoplasm research studies include .

Last updated: