Low Birth Weight clinical trials at University of California Health
4 in progress, 2 open to eligible people
Flow and Grow - The Ideal Time to Wean CPAP Off In Extremely Low Birth Weight Infants
open to all eligible people
Preterm neonates born at less than 30 weeks' gestation are commonly maintained on invasive or non-invasive respiratory support to facilitate gas exchange. While non-invasive respiratory support (NIS) can be gradually reduced over time as the infant grows, most weaning strategies often lead to weaning failure. This failure is evidenced by an increase in significant events such as apneas, desaturations, and/or bradycardias, increased work of breathing, or an inability to oxygenate or ventilate, resulting in escalated respiratory support. Although the optimal approach to weaning NIS remains uncertain, neonatal units that delay Continuous Positive Airway Pressure (CPAP) weaning until 32-34 weeks corrected gestational age exhibit lower rates of chronic lung disease. Therefore, the investigators aim to compare the duration on respiratory support and oxygen exposure in infants born at less than 30 weeks' gestational age who undergo a structured weaning protocol that includes remaining on CPAP until at least 32-34 weeks corrected gestational age (CGA). The hypothesis posits that preterm infants following a structured weaning protocol, including maintaining CPAP until a specific gestational age, will demonstrate lower rates of weaning failure off CPAP (defined as requiring more support and/or experiencing increased stimulation events 72 hours after CPAP weaning) than those managed according to the medical team's discretion.
at UCSD
Follow-up Visit of High Risk Infants
open to eligible people ages 18 months to 26 months
The NICHD Neonatal Research Network's Follow-Up study is a multi-center cohort in which surviving extremely low birth-weight infants born in participating network centers receive neurodevelopmental, neurosensory and functional assessments at 22-26 months corrected age (Infants born prior to July 1, 2012 were seen at 18-22 months corrected age). Data regarding pregnancy and neonatal outcome are collected prospectively. The goal is to identify potential maternal and neonatal risk factors that may affect infant neurodevelopment.
at UCLA UCSD
Transfusion of Prematures Trial
Sorry, in progress, not accepting new patients
The objective of the TOP trial is to determine whether higher hemoglobin thresholds for transfusing ELBW infants resulting in higher hemoglobin levels lead to improvement in the primary outcome of survival and rates of neurodevelopmental impairment (NDI) at 22-26 months of age, using standardized assessments by Bayley.
at UCLA
Optimizing Nutrition and Milk (Opti-NuM) Project
Sorry, not currently recruiting here
Early nutrition critically influences growth, neurodevelopment and morbidity among infants born of very low birth weight (VLBW), but current one-size-fits-all feeding regimes do not optimally support these vulnerable infants. There is increasing interest in "precision nutrition" approaches, but it is unclear which Human Milk (HM) components require personalized adjustment of doses. Previous efforts have focused on macronutrients, but HM also contains essential micronutrients as well as non-nutrient bioactive components that shape the gut microbiome. Further, it is unclear if or how parental factors (e.g. body mass index, diet) and infant factors (e.g. genetics, gut microbiota, sex, acuity) influence relationships between early nutrition and growth, neurodevelopment and morbidity. Understanding these complex relationships is paramount to developing effective personalized HM feeding strategies for VLBW infants. This is the overarching goal of the proposed Optimizing Nutrition and Milk (Opti-NuM) Project. The Opti-NuM Project brings together two established research platforms with complementary expertise and resources: 1) the MaxiMoM Program* with its clinically embedded translational neonatal feeding trial network in Toronto (Dr. Deborah O'Connor, Dr. Sharon Unger) and 2) the International Milk Composition (IMiC) Consortium, a world-renowned multidisciplinary network of HM researchers and data scientists collaborating to understand how the myriad of HM components contribute "as a whole" to infant growth and development, using systems biology and machine learning approaches. Members of the IMiC Corsortium that will work with on this study are located at the University of Manitoba (Dr. Meghan Azad), University of California (Dr. Lars Bode) and Stanford (Dr. Nima Aghaeepour).
at UCSD
Our lead scientists for Low Birth Weight research studies include Sandra Leibel, MD.
Last updated: