Nasopharyngeal Cancer clinical trials at University of California Health
12 in progress, 7 open to eligible people
TAK-500 With or Without Pembrolizumab in Adults With Select Locally Advanced or Metastatic Solid Tumors
open to eligible people ages 18 years and up
This study is about TAK-500, given either alone or with pembrolizumab, in adults with select locally advanced or metastatic solid tumors. The aims of the study are: - to assess the safety profile of TAK-500 when given alone and when given with pembrolizumab. - to assess the anti-tumor effects of TAK-500, when given alone and when given with pembrolizumab, in adults with locally advanced or metastatic solid tumors. Participants may receive TAK-500 for up to 1 year. Participants may continue with their treatment if they have continuing benefit and if this is approved by their study doctor. Participants who are receiving TAK-500 either alone or with pembrolizumab will continue with their treatment until their disease progresses or until they or their study doctor decide they should stop this treatment.
at UCSD
Toripalimab in Combination With Cisplatin and Gemcitabine in Participants With Recurrent Metastatic Nasopharyngeal Cancer
open to eligible people ages 12 years and up
This study aims to investigate toripalimab with chemotherapy in participants with nasopharyngeal cancer.
at UCSF
Nivolumab, in Combination With Chemotherapy Drugs to Treat Nasopharyngeal Carcinoma (NPC)
open to eligible people ages up to 21 years
This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
at UCSF
P-MUC1C-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With Advanced or Metastatic Solid Tumors
open to eligible people ages 18 years and up
A Phase 1, open label, dose escalation and expanded cohort study of P-MUC1C-ALLO1 in adult subjects with advanced or metastatic epithelial derived solid tumors, including but not limited to the tumor types listed below.
at UC Irvine UCSD UCSF
Testing Nivolumab and Ipilimumab Immunotherapy With or Without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer
open to eligible people ages 18 years and up
This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
at UC Irvine
BMS-986016 (Relatlimab) to the Usual Immunotherapy After Initial Treatment for Recurrent or Metastatic Nasopharyngeal Cancer
open to eligible people ages 18 years and up
This phase II trial tests the addition of BMS-986016 (relatlimab) to the usual immunotherapy after initial treatment for nasopharyngeal cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. The usual approach of treatment is initial treatment with chemotherapy such as the combination of cisplatin (or carboplatin) and gemcitabine, along with immunotherapy such as nivolumab. After the initial treatment is finished, patients may continue to receive additional immunotherapy. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Gemcitabine is a chemotherapy drug that blocks the cells from making deoxyribonucleic acid (DNA) and may kill cancer cells. Giving BMS-986016 in addition to the usual immunotherapy after initial treatment may extend the time without the tumor cells growing or spreading longer than the usual approach in patients with recurrent or metastatic nasopharyngeal cancer.
at UC Davis
Testing the Use of Investigational Drugs Atezolizumab and/or Bevacizumab With or Without Standard Chemotherapy in the Second-Line Treatment of Advanced-Stage Head and Neck Cancers
open to eligible people ages 18 years and up
This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
at UC Irvine
Individualized Treatment in Treating Patients With Stage II-IVB Nasopharyngeal Cancer Based on EBV DNA
Sorry, in progress, not accepting new patients
There are two study questions we are asking in this randomized phase II/III trial based on a blood biomarker, Epstein Barr virus (EBV) deoxyribonucleic acid (DNA) for locoregionally advanced non-metastatic nasopharyngeal cancer. All patients will first undergo standard concurrent chemotherapy and radiation therapy. When this standard treatment is completed, if there is no detectable EBV DNA in their plasma, then patients are randomized to either standard adjuvant cisplatin and fluorouracil chemotherapy or observation. If there is still detectable levels of plasma EBV DNA, patients will be randomized to standard cisplatin and fluorouracil chemotherapy versus gemcitabine and paclitaxel. Radiation therapy uses high energy x rays to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, fluorouracil, gemcitabine hydrochloride, and paclitaxel work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving cisplatin and fluorouracil is more effective than gemcitabine hydrochloride and paclitaxel after radiation therapy in treating patients with nasopharyngeal cancer.
at UC Davis UC Irvine UCSD UCSF
Induction Chemotherapy Response-Guided Radiation for EBV-Associated Nasopharyngeal Carcinoma
Sorry, not yet accepting patients
This clinical trial tests the effect of induction chemotherapy response-guided radiation (de-escalated intensity-modulated radiation therapy [IMRT]) compared to standard IMRT in patients with Epstein-Barr virus (EBV)-associated nasopharyngeal cancer. Intensity-modulated radiation therapy (IMRT) is an advanced form of 3-dimensional radiation therapy that uses computer-generated images to show the size and shape of the tumor. Thin beams of radiation of different intensities are aimed at the tumor from many angles. This type of radiation therapy reduces the damage to healthy tissue near the tumor. Radiation therapy sometimes causes unwanted symptoms or side effects, including late effects such as hearing loss and dental problems. The severity of the side effects is related to the radiation dose received and the amount of tissue that received radiation. De-escalation IMRT uses lower doses of radiation based on a good response to induction chemotherapy. Giving de-escalated IMRT may be as effective as standard doses of IMRT in treating patients with EBV-associated nasopharyngeal cancer.
at UCSF
Nivolumab + Chemoradiation in Stage II-IVB Nasopharyngeal Carcinoma (NPC)
Sorry, in progress, not accepting new patients
This phase II trial studies how well nivolumab and chemoradiotherapy works in treating patients with stage II-IVB nasopharyngeal cancer. Monoclonal antibodies, such as nivolumab, may block tumor growth in different ways by targeting certain cells. Chemoradiotherapy is the combination of chemotherapy and radiation therapy and may prevent the cancer from spreading when combined with nivolumab. Giving nivolumab and chemoradiotherapy may work better in treating patients with stage II-IVB nasopharyngeal cancer.
at UCSF
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors
Sorry, in progress, not accepting new patients
This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
at UC Davis UC Irvine UCSD
Pembrolizumab Combined With Cetuximab for Treatment of Recurrent/Metastatic Head & Neck Squamous Cell Carcinoma
Sorry, in progress, not accepting new patients
This is a prospective, multi-center, open-label, non-randomized, multi-arm phase II trial to evaluate the efficacy of combination therapy with pembrolizumab and cetuximab for patients with recurrent/metastatic HNSCC. There will be four patient cohorts, including a PD-1/PD-L1 inhibitor-naïve, cetuximab-naïve arm (Cohort 1), a PD-1/PD-L1 inhibitor-refractory, cetuximab-naïve arm (Cohort 2), a PD-1/PD-L1 inhibitor-refractory, cetuximab-refractory arm (Cohort 3), and a cutaneous HNSCC arm (Cohort 4). A total of 83 patients (33 in Cohort 1, 25 in Cohort 2, 15 in Cohort 3, and 10 in Cohort 4) will be eligible to enroll. Patients will be enrolled at 4 sites: UC San Diego Moores Cancer Center, UC Los Angeles Jonsson Comprehensive Cancer Center, University of Michigan Comprehensive Cancer Center, and University of Washington Siteman Cancer Center.
at UCLA UCSD
Our lead scientists for Nasopharyngeal Cancer research studies include David Oh Jennifer G. Michlitsch Shirin Attarian Siao-Yi Wang Sue S Yom, MD Deborah Wong.
Last updated: