Skip to main content

Peritoneal High Grade Serous Adenocarcinoma clinical trials at University of California Health

6 in progress, 1 open to eligible people

Showing trials for
  • Ipatasertib to the Usual Chemotherapy Treatment (Paclitaxel and Carboplatin) for Stage III or IV Epithelial Ovarian Cancer

    open to eligible females ages 18 years and up

    This phase I/IB trial tests the safety, side effects, and best dose of ipatasertib in combination with paclitaxel and carboplatin in treating patients with stage III or IV epithelial ovarian cancer. Ipatasertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Paclitaxel is in a class of medications called taxanes. It stops tumor cells from growing and dividing and may kill them. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Giving ipatasertib in combination with paclitaxel and carboplatin may lower the chance of the tumor growing or spreading for longer than the paclitaxel and carboplatin alone.

    at UCSF

  • Bevacizumab and Anetumab Ravtansine or Paclitaxel in Treating Patients With Refractory Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    Sorry, in progress, not accepting new patients

    This phase II trial studies the side effects of bevacizumab and anetumab ravtansine or paclitaxel in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that does not respond to treatment (refractory). Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Anetumab ravtansine is a drug that targets a protein in the body called mesothelin, which can be found in some ovarian, pancreatic and other tumors. Chemotherapy drugs, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving bevacizumab and anetumab ravtansine or paclitaxel may work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.

    at UC Irvine

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    Sorry, in progress, not accepting new patients

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    at UC Davis UC Irvine UCSD

  • Pegylated Liposomal Doxorubicin Hydrochloride With Atezolizumab and/or Bevacizumab in Treating Patients With Recurrent Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    Sorry, in progress, not accepting new patients

    This phase II/III trial studies how well pegylated liposomal doxorubicin hydrochloride with atezolizumab and/or bevacizumab work in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent). Chemotherapy drugs, such as pegylated liposomal doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. It is not yet known which combination will work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.

    at UC Irvine UCSF

  • Ruxolitinib Phosphate, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    Sorry, in progress, not accepting new patients

    This phase I/II trial studies the side effects and the best dose of ruxolitinib phosphate when given together with paclitaxel and carboplatin and to see how well they work in treating patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer. Ruxolitinib phosphate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate together with paclitaxel and carboplatin may be a better treatment for epithelial ovarian, fallopian tube, or primary peritoneal cancer compared to paclitaxel and carboplatin alone.

    at UCLA UCSD

  • Immunotherapy Drug, Tremelimumab, to the PARP Inhibition Drug, Olaparib, for Recurrent Ovarian, Fallopian Tube or Peritoneal Cancer

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well olaparib with or without tremelimumab works in treating patients with ovarian, fallopian tube, or peritoneal cancer that has come back (recurrent). PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as tremelimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and tremelimumab together may work better than olaparib alone in treating patients with ovarian, fallopian tube, or peritoneal cancer.

    at UC Irvine

Our lead scientists for Peritoneal High Grade Serous Adenocarcinoma research studies include .

Last updated: