Skip to main content

Brain Injury clinical trials at University of California Health

24 in progress, 10 open to eligible people

Showing trials for
  • Combined Neuromodulation and Cognitive Training for Post-mTBI Depression

    open to eligible people ages 18-65

    The primary goal of this clinical trial is to evaluate whether Personalized Augmented Cognitive Training (PACT) plus intermittent theta burst stimulation (iTBS) is effective for treating depression in Service Members, Veterans, and civilians who have sustained a mild TBI. Participants will receive PACT plus 20 sessions of iTBS or sham iTBS over 4 weeks. Assessments will occur at baseline, 2 weeks, 4 weeks, and 8 weeks. Researchers will compare the PACT+iTBS group to the PACT+sham iTBS group to see if PACT+iTBS is associated with more depression improvement.

    at UCSD

  • Combined Transcranial Magnetic Stimulation and Therapy for mTBI Related Headaches

    open to eligible people ages 18-65

    This study will assess the combined effectiveness of repetitive transcranial magnetic stimulation (rTMS) and telehealth based therapy in helping manage mild traumatic brain injury (mTBI) related headaches. The investigators hypothesize that active rTMS combined with telehealth therapy will provide marked reduction in mTBI related headaches and symptoms in comparison to their placebo counterparts.

    at UCSD

  • GOALS Cognitive Training Delivered to Aging Veterans in Person or Via Telehealth

    open to eligible people ages 65 years and up

    This study will use technology to deliver effective treatment for cognitive problems associated with TBI to Veterans at home, which may result in improved daily functioning and increased access to health care for the growing population of aging Veterans with history of TBI. The successful completion of this project may also increase older Veterans' ability to participate in research through increased understanding of the effect of in-home research opportunities on recruitment and retention. Additionally, the evidence gathered from this study may be used in future research studying home-based cognitive rehabilitation treatments for Veterans using telehealth technology.

    at UCSF

  • Hyperbaric Oxygen Brain Injury Treatment Trial

    open to eligible people ages 16-65

    The purpose of this innovative adaptive phase II trial design is to determine the optimal combination of hyperbaric oxygen treatment parameters that is most likely to demonstrate improvement in the outcome of severe TBI patients in a subsequent phase III trial.

    at UCSD

  • Brain Oxygen Optimization in Severe TBI, Phase 3

    “We want to hear your opinions about this study! Click the green button below to share.”

    open to eligible people ages 14 years and up

    BOOST3 is a randomized clinical trial to determine the comparative effectiveness of two strategies for monitoring and treating patients with traumatic brain injury (TBI) in the intensive care unit (ICU). The study will determine the safety and efficacy of a strategy guided by treatment goals based on both intracranial pressure (ICP) and brain tissue oxygen (PbtO2) as compared to a strategy guided by treatment goals based on ICP monitoring alone. Both of these alternative strategies are used in standard care. It is unknown if one is more effective than the other. In both strategies the monitoring and goals help doctors adjust treatments including the kinds and doses of medications and the amount of intravenous fluids given, ventilator (breathing machine) settings, need for blood transfusions, and other medical care. The results of this study will help doctors discover if one of these methods is more safe and effective.

    at UC Davis UCLA UCSF

  • Mild TBI Assessment & Rehabilitation

    open to eligible people ages 18 years and up

    One of the most pressing concerns within the VA currently is the provision of interventions that address the cognitive as well as emotional problems faced by Veterans with mild TBI and comorbid conditions. When completed, these studies will inform us whether training core attentional self-regulatory control functions via personally-relevant activities will be effective in improving daily life for Veterans with mild TBI and comorbid conditions. The study design will provide a test not only of potential benefits for real life functioning, but also determine to what extent these benefits are related to actual changes in cognitive/behavioral performance and brain networks corresponding to these functions. This project will provide a foundation for future studies to investigate the neural mechanisms that support improvements of cognition and behavior in mTBI.

    at UCSF

  • Retraining Neural Pathways Improves Cognitive Skills After A Mild Traumatic Brain Injury

    open to eligible people ages 18-60

    The proposed study tests the feasibility (Phase I) of PATH neurotraining to improve working memory and attention in mTBI patients rapidly and effectively to provide clinical testing of a therapeutic training for the remediation of cognitive disorders caused by a concussion. This study will contribute to the fundamental knowledge of how to remediate concussions from a mTBI to enhance the health, lengthen the life and reduce the disabilities that result from a mTBI.

    at UCSD

  • NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

    open to eligible people ages 18 years and up

    This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), and Duke University Medical Center. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

    at UCSF

  • Biomarkers in the Hyperbaric Oxygen Brain Injury Treatment Trial (BioHOBIT)

    open to eligible people ages 16-65

    There are no therapeutic agents that have been shown to improve outcomes from severe traumatic brain injury (TBI). Critical barriers to progress in developing treatments for severe TBI are the lack of: 1) monitoring biomarkers for assessing individual patient response to treatment; 2) predictive biomarkers for identifying patients likely to benefit from a promising intervention. Currently, clinical examination remains the fundamental tool for monitoring severe TBI patients and for subject selection in clinical trials. However, these patients are typically intubated and sedated, limiting the utility of clinical examinations. Validated monitoring and predictive biomarkers will allow titration of the dose of promising therapeutics to individual subject response, as well as make clinical trials more efficient by enabling the enrollment of subjects likely to benefit. Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and high sensitivity c-reactive protein (hsCRP) are promising biomarkers that may be useful as 1) monitoring biomarkers; 2) predictive biomarkers in severe TBI trials. Although the biological rationale supporting their use is strong, significant knowledge gaps remain. To address these gaps in knowledge, we propose an ancillary observational study leveraging an ongoing severe TBI clinical trial that is not funded to collect biospecimen. The Hyperbaric Oxygen in Brain Injury Treatment (HOBIT) trial, a phase II randomized control clinical trial that seeks to determine the dose of hyperbaric oxygen therapy (HBOT) that that has the highest likelihood of demonstrating efficacy in a phase III trial. The proposed study will: 1) validate the accuracy of candidate monitoring biomarkers for predicting clinical outcome; 2) determine the treatment effect of different doses of HBOT on candidate monitoring biomarkers; and 3) determine whether there is a biomarker defined subset of severe TBI that responds favorably to HBOT. This proposal will: 1) inform a go/no-go decision for a phase III trial of HBOT by providing adjunctive evidence of the effect of HBOT on key biological pathways through which HBOT is hypothesized to affect outcome; 2) provide evidence to support further study of the first monitoring biomarkers of severe TBI; 3) increase the likelihood of success of a phase III trial by identifying the sub-population of severe TBI likely to benefit from HBOT; 4) create a repository of TBI biospecimen which may be accessed by other investigators. This study is related to NCT04565119

    at UCSD

  • Transcranial Doppler Using Wearable Ultrasound Patch

    open to eligible people ages 18 years and up

    The main objective of this research is to measure the Doppler signal by the ultrasonic patch. Blood flow measurement is critical for vasospasm, stroke, and embolism monitoring on patients in the ICU or understanding the neurovascular coupling on different subjects. Currently, A conventional transcranial Doppler (TCD) probe is widely used for these applications. A headset design must be applied and fixed on the participants to obtain stable blood flow spectra. However, the TCD headset is operator dependent. The operator needs to be a trained expert and hold the ultrasound probe to get accurate blood flow velocity information. The stretchable and wearable non-invasive ultrasonic patch can not only free the operator's hands but can also provide long-term continuous monitoring, which is not possible by using the current operator-dependent ultrasound machine. The device can be conformal to the skin and attached to the skin surface.

    at UCSD

  • Advancing Understanding of Transportation Options

    Sorry, in progress, not accepting new patients

    This Stage II randomized, controlled, longitudinal trial seeks to assess the acceptability, feasibility, and effects of a driving decision aid use among geriatric patients and providers. This multi-site trial will (1) test the driving decision aid (DDA) in improving decision making and quality (knowledge, decision conflict, values concordance and behavior intent); and (2) determine its effects on specific subpopulations of older drivers (stratified for cognitive function, decisional capacity, and attitudinally readiness for a mobility transition). The overarching hypotheses are that the DDA will help older adults make high-quality decisions, which will mitigate the negative psychosocial impacts of driving reduction, and that optimal DDA use will target certain populations and settings.

    at UCSD

  • Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Sorry, in progress, not accepting new patients

    Chronic pain affects 1 in 4 US adults, and many cases are resistant to almost any treatment. Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but traditional approaches target only brain regions involved in one aspect of the pain experience and provide continuous 24/7 brain stimulation which may lose effect over time. By developing new technology that targets multiple, complimentary brain regions in an adaptive fashion, the investigators will test a new therapy for chronic pain that has potential for better, more enduring analgesia.

    at UCSF

  • FFP In Traumatic BRAin INjury (FIT-BRAIN) Trial

    Sorry, not yet accepting patients

    The goal of this clinical trial is to learn about treatment with fresh frozen plasma (FFP) in individuals with moderate to severe traumatic brain injury. The two main question[s]it aims to answer are: - Is the FFP treatment safe? - Does the FFP treatment impact the 24-hour, 3-month and 6-month outcomes, intensive-care free days, mortality, and hospital brain and physical function at discharge. Patients with moderate to severe TBI will randomly receive either: - Standard of care treatment - Standard of care treatment + 2 units of FFP. Researchers will compare participants receiving standard of care treatment to those receiving experimental fresh frozen plasma (FFP) treatment to see if the FFP is safe and beneficial to participant outcomes.

    at UC Davis

  • Multi-Arm Multi-Stage Adaptive Platform Trial (APT) for the Acute Treatment of Traumatic Brain Injury

    Sorry, not yet accepting patients

    The purpose of this study is to determine if experimental drug treatment improves recovery after TBI as compared to a control (placebo) group. Changes in recovery will be measured throughout the study. The study drugs listed below are approved by the U.S. Food and Drug Administration (FDA) but are being used "off-label" in this study. This means that the drugs are not currently approved to treat TBI.

    at UCSF

  • Personalized Brain Stimulation to Treat Chronic Concussive Symptoms

    Sorry, not yet accepting patients

    The goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: 1. Does personalized TMS improve brain connectivity after concussion? 2. Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? 3. Do the improvements last up to 2 months post-treatment? 4. Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): 1. One for the baseline symptom assessments and magnetic resonance imaging (MRI) 2. Ten for TMS administration 3. Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.

    at UCLA

  • Short-term And Longer-term Cognitive Impact Of Neurochecks

    Sorry, not yet accepting patients

    The proposed research plan seeks to understand the impact of sleep disruption in the Neurological Intensive Care Unit (ICU) on older patients with acute brain injury (ABI). In current practice, the neurocritical care community performs frequent serial neurological examinations ("neurochecks") in an effort to monitor patients for neurological deterioration following brain injury. Many neurocritical patients are older and/or cognitively fragile, and delirium is common. Although ICU delirium is multifaceted, frequent neurochecks may represent a modifiable risk factor if the investigators can better understand the risks and benefits of various neurocheck frequencies. This project will randomize patients with acute spontaneous intracerebral hemorrhage (ICH) to either hourly (Q1) or every-other-hour (Q2) neurochecks and evaluate the impact of neurocheck frequency on delirium. Second, longer-term cognitive outcomes will be investigated in patients with ICH randomized to Q1 versus Q2 neurochecks with the goal of identifying whether hourly neurochecks increase the risk for dementia.

    at UCSD

  • Telerehabilitation Early After CNS Injury

    Sorry, not yet accepting patients

    The goal of this clinical trial is to assess the safety and feasibility of providing extra doses of rehabilitation therapy for persons with a recent stroke, traumatic brain injury (TBI) and/or spinal cord injury (SCI). The therapy treatment targets to improve arm function by introducing telerehabilitation to the bedside of participants during the inpatient rehab admission period. Participants will use a newly developed functional training system (HandyMotion) to access therapy treatment program directly from their hospital room. HandyMotion is a sensor-based training system that can connect to the TV set in the hospital room, enabling patients to access their therapy training program to practice rehab-oriented games and exercises ad libitum, at any time of the day.

    at UCLA

  • Ketogenic Diet for Pediatric Acute Brain Injury

    Sorry, currently not accepting new patients, but might later

    This is a prospective pilot study evaluating the safety and feasibility of implementing the ketogenic diet in children admitted to the pediatric intensive care unit with acute brain injury such as stroke, traumatic brain injury, and intracerebral hemorrhage. Animal studies suggest that in the aftermath of injury the brain's ability to use glucose as a fuel is impaired. The ketogenic diet is a high fat, low carbohydrate diet which is already used in clinical practice for the treatment of medication resistant epilepsy and is intended to switch the body over to burning fat rather than carbohydrates for fuel. In lieu of their standard tube-feeds, 5-10 children admitted to the PICU with these diagnoses will receive low carbohydrate, high fat ketogenic feeds for 2 weeks. We hypothesize that ketones will be detectable through serum tests and MRI spectroscopy studies of the brain within several days of diet initiation, and that there will be a low incidence of side effects and adverse events, Measures of interest will include the incidence of kidney stones, excessive acidosis and excessive hypoglycemia. The feasibility of implementing this protocol for a larger efficacy trial will be assessed through serial measurements of blood glucose, beta-hydroxybutyrate (a type of ketone body), and serum bicarbonate levels. In addition, levels of ketone bodies within the brain will be measured through MRI spectroscopy sequence which will be acquired at the same time as a follow-up MRI brain study ordered for clinical purposes.

    at UCLA

  • Traumatic Injury Clinical Trial Evaluating Tranexamic Acid in Children: An Efficacy Study

    Sorry, not yet accepting patients

    Trauma is the leading cause of death and disability in children in the United States. The objective of this study is to evaluate the benefits and harms of tranexamic acid (TXA; a drug that stops bleeding) in severely injured children with hemorrhagic brain and/or torso injuries. Using thromboelastography, we will measure baseline fibrinolysis to assess for treatment effects of TXA at different levels of fibrinolysis.

    at UC Davis

  • Automated Robotic TCD in Traumatic Brain Injury

    Sorry, not yet accepting patients

    This study's objective is to determine the safety, feasibility and efficacy of prolonged automated robotic TCD monitoring in critically ill patients with severe TBI across multiple clinical sites with varying levels of TCD availability and experience

    at UC Davis

  • Biomarkers of Brain Injury in Critically-Ill Children on Extracorporeal Membrane Oxygenation

    Sorry, in progress, not accepting new patients

    The BEAM study is a multicenter, prospective, observational study in children supported on extracorporeal membrane oxygenation (ECMO). The primary goals of this study are to develop and refine a brain injury multimarker panel for accurate neurologic monitoring at the bedside and early classification of mortality and disability outcomes of critically ill children supported on ECMO.

    at UCLA

  • Clinical Evaluation of the i-STAT TBI Test

    Sorry, accepting new patients by invitation only

    The purpose of this study is to evaluate the clinical performance of the i-STAT TBI test for the proposed intended use; to assist in determining the need for a CT scan in patients presenting with suspected mild traumatic brain injury who are 18 years of age or older. The secondary objective of this study is the collection of additional data and specimens from all study subjects that may support other purposes related to the understanding of TBI.

    at UCSF

  • TRACK-TBI Longitudinal Biomarker Study

    Sorry, accepting new patients by invitation only

    The overarching goal of this study is to improve understanding of the long-range natural history of TBI by extending follow-up of a previously enrolled cohort (TRACK-TBI) beyond the first 12 months after injury.

    at UCSF

  • Transforming Research and Clinical Knowledge in Traumatic Brain Injury Epileptogenesis Project (TRACK-TBI EPI)

    Sorry, accepting new patients by invitation only

    The overarching goal of this study is to improve understanding of the long-range natural history of TBI and post-traumatic epilepsy (PTE) by extending follow-up of a previously enrolled cohort (TRACK-TBI) beyond the first 12 months after injury.

    at UCSF

Our lead scientists for Brain Injury research studies include .

Last updated: