Skip to main content

Intracranial Hemorrhage clinical trials at University of California Health

9 in progress, 7 open to eligible people

Showing trials for
  • Anticoagulation in ICH Survivors for Stroke Prevention and Recovery

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 18 years and up

    Primary Aim: To determine if apixaban is superior to aspirin for prevention of the composite outcome of any stroke (hemorrhagic or ischemic) or death from any cause in patients with recent ICH and atrial fibrillation (AF). Secondary Aim: To determine if apixaban, compared with aspirin, results in better functional outcomes as measured by the modified Rankin Scale.

    at UC Davis UC Irvine UCLA UCSF

  • Recombinant Factor VIIa (rFVIIa) for Hemorrhagic Stroke Trial

    open to eligible people ages 18-80

    The objective of the rFVIIa for Acute Hemorrhagic Stroke Administered at Earliest Time (FASTEST) Trial is to establish the first treatment for acute spontaneous intracerebral hemorrhage (ICH) within a time window and subgroup of patients that is most likely to benefit. The central hypothesis is that rFVIIa, administered within 120 minutes from stroke onset with an identified subgroup of patients most likely to benefit, will improve outcomes at 180 days as measured by the Modified Rankin Score (mRS) and decrease ongoing bleeding as compared to standard therapy.

    at UC Davis UC Irvine UCLA UCSD UCSF

  • Short-term And Longer-term Cognitive Impact Of Neurochecks

    open to eligible people ages 55-100

    The proposed research plan seeks to understand the impact of sleep disruption in the Neurological Intensive Care Unit (ICU) on older patients with acute brain injury (ABI). In current practice, the neurocritical care community performs frequent serial neurological examinations ("neurochecks") in an effort to monitor patients for neurological deterioration following brain injury. Many neurocritical patients are older and/or cognitively fragile, and delirium is common. Although ICU delirium is multifaceted, frequent neurochecks may represent a modifiable risk factor if the investigators can better understand the risks and benefits of various neurocheck frequencies. This project will randomize patients with acute spontaneous intracerebral hemorrhage (ICH) to either hourly (Q1) or every-other-hour (Q2) neurochecks and evaluate the impact of neurocheck frequency on delirium. Second, longer-term cognitive outcomes will be investigated in patients with ICH randomized to Q1 versus Q2 neurochecks with the goal of identifying whether hourly neurochecks increase the risk for dementia.

    at UCSD

  • Determinants of Incident Stroke Cognitive Outcomes and Vascular Effects on RecoverY

    open to eligible people ages 18 years and up

    The overall goal of the DISCOVERY study is to better understand what factors contribute to changes in cognitive (i.e., thinking and memory) abilities in patients who experienced a stroke. The purpose of the study is to help doctors identify patients at risk for dementia (decline in memory, thinking and other mental abilities that significantly affects daily functioning) after their stroke so that future treatments may be developed to improve outcomes in stroke patients. For this study, a "stroke" is defined as either (1) an acute ischemic stroke (AIS, or blood clot in the brain), (2) an intracerebral hemorrhage (ICH, or bleeding in the brain), (3) or an aneurysmal subarachnoid hemorrhage (aSAH, or bleeding around the brain caused by an abnormal bulge in a blood vessel that bursts). The investigators hypothesize that: 1. The size, type and location of the stroke play an important role in recovery of thinking and memory abilities after stroke, and pre-existing indicators of brain health further determine the extent of this recovery. 2. Specific stroke events occurring in individuals with underlying genetic or biological risk factors can cause further declines in brain heath, leading to changes in thinking and memory abilities after stroke. 3. Studying thinking and memory alongside brain imaging and blood samples in patients who have had a stroke allows for earlier identification of declining brain health and development of individualized treatment plans to improve patient outcomes in the future.

    at UCLA UCSD

  • Neonatal Seizure Registry, GEnetics of Post-Neonatal Epilepsy

    open to all eligible people

    The NSR-GENE study is a longitudinal cohort study of approximately 300 parent-child trios from the Neonatal Seizure Registry and participating site outpatient clinics that aims to evaluate whether and how genes alter the risk of post-neonatal epilepsy among children with acute provoked neonatal seizures. The researchers aim to develop prediction rules to stratify neonates into low, medium, and high risk for post-neonatal epilepsy based on clinical, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic risk factors.

    at UCSF

  • NOninVasive Intracranial PrEssure from Transcranial DoppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

    open to eligible people ages 18 years and up

    This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), and Duke University Medical Center. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

    at UC Davis UCSF

  • Screening Emotions in Adolescents at the Hospital for mTBI

    open to eligible people ages 11-17

    The goal of this observational study is to develop and validate a clinical tool to predict which adolescents aged 11 to less than 18 years of age with mild traumatic brain injury (mTBI) are at an increased risk for developing significant new or worsening mental health conditions. The main aims the study wish to answer are: - Does the adolescent have new or worsening depression or anxiety defined as a change from their previous medical history using self-reported questionnaires at either one or three months post-injury? - Does the adolescent have unmet mental health care needs, defined as not receiving any mental or behavior health care in patients with new or worsening anxiety or depression as defined by the self reported questionnaires? Participants will be enrolled after being diagnosed in the emergency department (ED) with an mTBI. During the ED visit, the child's parent/caregiver and the adolescent will complete several questionnaires related to mental health which include tools to measure anxiety and depression. Participants will be asked to complete these questionnaires again at 1 month and 3 months post enrollment.

    at UC Davis

  • MIND: Artemis in the Removal of Intracerebral Hemorrhage

    Sorry, in progress, not accepting new patients

    The primary objective of this multicenter randomized controlled study is to compare the safety and efficacy of minimally invasive hematoma evacuation with the Artemis Neuro Evacuation Device to best medical management for the treatment of intracerebral hemorrhage (ICH).

    at UCLA

  • Neonatal Seizure Registry - Developmental Functional EValuation

    Sorry, in progress, not accepting new patients

    The NSR-DEV study is a longitudinal cohort study of around 280 Neonatal Seizure Registry participants that aims to evaluate childhood outcomes after acute symptomatic neonatal seizures, as well as examine risk factors for developmental disabilities and whether these are modified by parent well-being.

    at UCSF

Our lead scientists for Intracranial Hemorrhage research studies include .

Last updated: