Skip to main content

Neuroblastoma clinical trials at UC Health
40 in progress, 25 open to new patients

  • 124I-Metaiodobenzylguanidine (MIBG) PET/CT Diagnostic Imaging and Dosimetry for Patients With Neuroblastoma: A Pilot Study

    open to eligible people ages 3 years and up

    This is a pilot study with the primary purpose to describe organ dosimetry and acute toxicities using no carrier added and carrier added 124I-MIBG PET/CT in patients with neuroblastoma (NB). Eligible patients are 3 years of age and older with relapsed or refractory neuroblastoma who are currently enrolled on a treatment protocol with 131I-MIBG. After all eligibility criteria are met, patients will receive a diagnostic imaging dose of 124I-MIBG followed by sequential PET/CT dosimetry scans on Days 0, 1, 2 and 5. Subsequent, planned therapeutic administration of 131I-MIBG will occur between Days 7 to 21, as specified by the patient's therapeutic MIBG protocol. An optional single follow up 124I-MIBG PET-CT scan will be done to assess tumor sites 6 weeks after the patient has their MIBG therapy.

    at UCSF

  • 131I-MIBG Alone VS. 131I-MIBG With Vincristine and Irinotecan VS131I-MIBG With Vorinistat

    open to eligible people ages 2-30

    This study will compare three treatment regimens containing metaiodobenzylguanidine (MIBG) and compare their effects on tumor response and associated side effects, to determine if one therapy is better than the other for people diagnosed with relapsed or persistent neuroblastoma.

    at UCSF

  • Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients With Relapsed or Refractory Solid Tumors

    open to eligible people ages 2-21

    This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back or that have not responded to standard therapy. Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Biomarkers in Tumor Tissue Samples From Patients With Newly Diagnosed Neuroblastoma or Ganglioneuroblastoma

    open to eligible people ages up to 30 years

    This research trial studies biomarkers in tumor tissue samples from patients with newly diagnosed neuroblastoma or ganglioneuroblastoma. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer.

    at UCLA UCSF UC Irvine UC Davis

  • Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back or do not respond to treatment and have spread to other places in the body. Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients With Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

    open to eligible people ages up to 30 years

    This partially randomized phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better in treating younger patients with neuroblastoma or ganglioneuroblastoma.

    at UCSF

  • Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Late Effects After Treatment in Patients With Previously Diagnosed High-Risk Neuroblastoma

    open to eligible people ages 5-50

    This research trial studies late effects after treatment in patients with previously diagnosed high-risk neuroblastoma. Studying late effects after treatment may help to decide which treatments for high-risk neuroblastoma are better tolerated with less side effects over time.

    at UCSF

  • MIBG With Dinutuximab

    open to eligible people ages 1-30

    131I-Metaiodobenzylguanidine (131I-MIBG) is one of the most effective therapies utilized for neuroblastoma patients with refractory or relapsed disease. In this pediatric phase 1 trial, 131I-MIBG will be given in combination with dinutuximab, a chimeric 14.18 monoclonal antibody. This study will utilize a traditional Phase I dose escalation 3+3 design to determine a recommended phase 2 pediatric dose. An expansion cohort of an additional 6 patients may then be enrolled.

    at UCSF

  • Neuroblastoma Biology Study

    open to eligible people ages up to 99 years

    Medical scientists want to find better ways to treat neuroblastoma and to find ways to prevent the tumor from growing back. To do this, they need more information about the characteristics of neuroblastoma cells. Therefore, they want to study samples of neuroblastoma tissues and neuroblastoma and normal cells in the blood and bone marrow that may be related to the growth of neuroblastoma cells. Doctors and other medical scientists also want to find better ways to detect and measure neuroblastoma to improve the ability to follow the response of tumor cells to therapy.

    at UCSF

  • Neuroblastoma Maintenance Therapy Trial

    open to eligible people ages 1-30

    Difluoromethylornithine (DFMO) will be used in an open label, single agent, multicenter, study for patients with neuroblastoma in remission. In this study subjects will receive 730 Days of oral difluoromethylornithine (DFMO) at a dose of 500 to 1000 mg/m2 BID on each day of study. This study will focus on the use of DFMO in high risk neuroblastoma patients that are in remission as a strategy to prevent recurrence.

    at UCSF

  • Neuroblastoma Precision Trial

    open to eligible people ages 1-30

    This proposal sets forth the platform for a Precision Medicine clinical trial through the New Approaches to Neuroblastoma Therapy (NANT) consortium. The plan is to utilize NANT's established multi-institutional infrastructure and Translational Genomics Research Institute GEM sequencing platform for acquisition and gene panel sequencing of relapsed biological specimens in relapsed/refractory neuroblastoma (rNB) including those obtained from the bone, bone marrow or soft tissue. Our primary aim is to identify subgroups of rNB patients who have potentially targetable genetic (ALK, MAPK pathway, Metabolic-related genes) and/or immunologic (tumor-associated macrophage infiltration and/or programmed death ligand [PD-L1] expression) biomarkers in rNB. Additional potential novel biomarkers will also be evaluated and reported in this cohort of patients.

    at UCSF

  • Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas

    open to eligible people ages 12 months to 30 years

    This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Monoclonal antibodies, such as nivolumab and ipilimumab, may block tumor growth in different ways by targeting certain cells. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

    at UCSF

  • Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body and have come back or do not respond to treatment. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • PI3K/mTOR Inhibitor LY3023414 in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well PI3K/mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body and have come back or do not respond to treatment. PI3K/mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Selumetinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well selumetinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with MAPK pathway activation mutations that have spread to other places in the body and have come back or do not respond to treatment. Selumetinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Study of Lorlatinib (PF-06463922)

    open to eligible people ages 1-90

    Lorlatinib is a novel inhibitor across ALK variants, including those resistant to crizotinib. In this first pediatric phase 1 trial of lorlatinib, the drug will be utilized as a single agent and in combination with chemotherapy in patients with relapsed/refractory neuroblastoma. The dose escalation phase of this study (Cohort A1) uses a traditional Phase I 3+3 design. Once a recommended phase 2 pediatric dose is identified, an expansion cohort of 6 patients (Cohort B1), within which ALKi naïve patients will be prioritized, will be initiated. Parallel cohorts will be initiated in adults or patients with large BSA (Cohort A2) and in combination with chemotherapy upon establishing RP2D (Cohort B2).

    at UCSF

  • Study of neuroblastoma patients assigned to the appropriate treatment group based on the age, tumor stage and biologic features

    “A tumor may not need treatment until it progresses, observation may be sufficient. Measuring biomarkers in tumor cells help plan future care”

    open to eligible people ages up to 17 months

    This phase III trial studies how well response and biology-based risk factor-guided therapy works in treating younger patients with non-high risk neuroblastoma. Sometimes a tumor may not need treatment until it progresses. In this case, observation may be sufficient. Measuring biomarkers in tumor cells may help plan when effective treatment is necessary and what the best treatment is. Response and biology-based risk factor-guided therapy may be effective in treating patients with non-high risk neuroblastoma and may help to avoid some of the risks and side effects related to standard treatment.

    at UCSF UC Davis UCLA

  • Study of RXDX-101 in Children With Recurrent or Refractory Solid Tumors and Primary CNS Tumors, With or Without TRK, ROS1, or ALK Fusions

    open to eligible people ages 2-22

    This is a 5-part, open-label, Phase 1/1b multicenter, dose escalation study in pediatric patients with relapsed refractory solid tumors; 2) primary CNS tumors; 3) neuroblastoma; 4) non-neuroblastoma, extracranial solid tumors with NTRK1/2/3, ROS1 or ALK gene rearrangements; and 5) patients who are otherwise eligible but unable to swallow capsules. The study is designed to explore the safety, maximum tolerated dose (MTD) or recommended Phase 2 dose (RP2D), pharmacokinetics, and antitumor activity of entrectinib.

    at UCSF

  • Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

    open to eligible people ages 12 months to 21 years

    This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

    at UCSF UCLA

  • Trial of CUDC-907 in Children and Young Adults With Relapsed or Refractory Solid Tumors, CNS Tumors, or Lymphoma

    open to eligible people ages 1-21

    This research study is evaluating a novel drug called CUDC-907 as a possible treatment for resistant (refractory) pediatric solid tumors (including neuroblastoma), lymphoma, or brain tumors.

    at UCSF

  • Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

    at UCSF

  • Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body and have come back or do not respond to treatment. Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • 131I-Labeled MIBG for Refractory Neuroblastoma: A Compassionate Use Protocol

    Sorry, not accepting new patients

    This is a compassionate use protocol to allow patients with advanced neuroblastoma palliative access to 131I-metaiodobenzylguanidine (131I-MIBG).

    at UCSF

  • A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies

    Sorry, not currently recruiting here

    An open-label, global, multi-center study to evaluate the safety and pharmacokinetics of venetoclax monotherapy, to determine the dose limiting toxicity (DLT) and the recommended Phase 2 dose (RPTD), and to assess the preliminary efficacy of venetoclax in pediatric and young adult participants with relapsed or refractory malignancies.

    at UCSF

  • Busulfan, Melphalan, and Stem Cell Transplant After Chemotherapy in Treating Patients With Newly Diagnosed High-Risk Neuroblastoma

    Sorry, currently not accepting new patients, but might later

    This pilot clinical trial studies busulfan, melphalan, and stem cell transplant after chemotherapy in treating patients with newly diagnosed neuroblastoma that is likely to come back or spread. Giving chemotherapy to the entire body before a stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy.

    at UCSF UC Davis

  • Crizotinib and Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Solid Tumors or Anaplastic Large Cell Lymphoma

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and the best dose of crizotinib giving together with combination chemotherapy in treating younger patients with relapsed or refractory solid tumors or anaplastic large cell lymphoma. Crizotinib may stop the growth of tumor or cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cyclophosphamide, topotecan hydrochloride, dexrazoxane hydrochloride, doxorubicin hydrochloride, and vincristine sulfate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing

    at UCSF

  • Crizotinib in Treating Younger Patients With Relapsed or Refractory Solid Tumors or Anaplastic Large Cell Lymphoma

    Sorry, in progress, not accepting new patients

    This phase I/II trial the studies side effects and best dose of crizotinib and to see how well it works in treating young patients with solid tumors or anaplastic large cell lymphoma that has returned after a period of improvement or does not respond to treatment. Crizotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. (Phase I completed 2/15/13)

    at UCSF

  • Genetic Susceptibility Biomarkers in Children With Neuroblastoma (Also Known as Neuroblastoma Epidemiology in North America [NENA])

    Sorry, in progress, not accepting new patients

    This research trial studies the genes biomarkers in children with neuroblastoma. Studying the genes in a child's cancer cells may help doctors improve ways to diagnose and treat children with neuroblastoma.

    at UCSF UC Davis

  • Immunotherapy of Relapsed Refractory Neuroblastoma With Expanded NK Cells

    Sorry, not currently recruiting here

    This NANT trial will determine the maximum tolerated dose (MTD) of autologous expanded natural killer (NK) cells when combined with standard dosing of ch14.18 and will assess the feasibility of adding lenalidomide at the recommended Phase II dose of the expanded NK cells with ch14.18, for treatment of children with refractory or recurrent neuroblastoma.

    at UCSF

  • Lenalidomide and Dinutuximab With or Without Isotretinoin in Treating Younger Patients With Refractory or Recurrent Neuroblastoma

    Sorry, currently not accepting new patients, but might later

    This phase I trial studies the side effects and best dose of lenalidomide when given together with dinutuximab with or without isotretinoin in treating younger patients with neuroblastoma that does not respond to treatment or that has come back. Drugs used in chemotherapy, such as lenalidomide and isotretinoin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as dinutuximab, may interfere with the ability of tumor cells to grow and spread. Giving more than one drug (combination chemotherapy) together with dinutuximab therapy may kill more tumor cells.

    at UCSF

  • Lorvotuzumab Mertansine in Treating Younger Patients With Relapsed or Refractory Wilms Tumor, Rhabdomyosarcoma, Neuroblastoma, Pleuropulmonary Blastoma, Malignant Peripheral Nerve Sheath Tumor, or Synovial Sarcoma

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well lorvotuzumab mertansine works in treating younger patients with Wilms tumor, rhabdomyosarcoma, neuroblastoma, pleuropulmonary blastoma, malignant peripheral nerve sheath tumor (MPNST), or synovial sarcoma that has returned or that does not respond to treatment. Antibody-drug conjugates, such as lorvotuzumab mertansine, are created by attaching an antibody (protein used by the body?s immune system to fight foreign or diseased cells) to an anti-cancer drug. The antibody is used to recognize tumor cells so the anti-cancer drug can kill them.

    at UCSF UC Davis

  • N2007-02:Bevacizumab,Cyclophosphamide,& Zoledronic Acid in Patients W/ Recurrent or Refractory High-Risk Neuroblastoma

    Sorry, in progress, not accepting new patients

    RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Zoledronic acid may stop the growth of tumor cells in bone. Giving bevacizumab together with cyclophosphamide and zoledronic acid may kill more tumor cells.

    PURPOSE: This phase I trial is studying the side effects of giving bevacizumab together with cyclophosphamide and zoledronic acid in treating patients with recurrent or refractory high-risk neuroblastoma.

    at UCSF

  • N2012-01: Phase 1 Study of Difluoromethylornithine (DFMO) and Celecoxib With Cyclophosphamide/Topotecan

    Sorry, in progress, not accepting new patients

    This study will combine an oral drug called DFMO with celecoxib (also oral) and two IV chemotherapy medicines called cyclophosphamide and topotecan. - To find the highest dose of DFMO that can be given with celecoxib, cyclophosphamide and topotecan without causing severe side effects. - To find out the side effects seen by giving DFMO at different dose levels with celecoxib, cyclophosphamide and topotecan. - To measure the levels of DFMO in the blood at different dose levels. - To determine if your tumor gets smaller after treatment with DFMO, celecoxib, cyclophosphamide and topotecan. - To determine if specific gene changes in you or your tumor makes you more prone to side effects or affects your tumor's response to the combination of DFMO, celecoxib, cyclophosphamide and topotecan. - To determine if the amount of normal chemicals in your body called polyamines go down in response to DFMO, celecoxib, cyclophosphamide and topotecan, and whether you are more likely to have a good response to the treatment if they do.

    at UCSF

  • Pediatric Precision Laboratory Advanced Neuroblastoma Therapy

    Sorry, not currently recruiting here

    A prospective open label, multicenter study to evaluate the feasibility and acute toxicity of using molecularly guided therapy in combination with standard therapy followed by a Randomized Controlled Trial of standard immunotherapy with or without DFMO followed by DFMO maintenance for Subjects with Newly Diagnosed High-Risk Neuroblastoma.

    at UCSF

  • Sorafenib and Cyclophosphamide/Topotecan in Patients With Relapsed and Refractory Neuroblastoma

    Sorry, in progress, not accepting new patients

    This study will combine three drugs: sorafenib, cyclophosphamide and topotecan. Adding sorafenib to cyclophosphamide and topotecan may increase the effectiveness of this combination. The investigators first need to find out the highest dose of sorafenib that can be given safely together with cyclophosphamide and topotecan. This is the first study to test giving these three drugs together and will help determine the highest dose of sorafenib that can safely be given together with cyclophosphamide and topotecan to patients with resistant/relapsed neuroblastoma.

    at UCSF

  • Study of MLN8237 in Combination With Irinotecan and Temozolomide

    Sorry, in progress, not accepting new patients

    The goal of the first part of this clinical trial (Phase I portion) is to study the side effects, drug breakdown (pharmacokinetics), and dosing of the drug MLN8237 when added to standard chemotherapy drugs, irinotecan and temozolomide. The goal of the second part of this clinical trial (Phase II portion) is to learn how many children and young adults show improvements in their neuroblastoma when treated with the combination of MLN8237, irinotecan, and temozolomide.

    at UCSF

  • Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, currently not accepting new patients, but might later

    This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with solid tumors, non-hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

Last updated: