Pulmonary Disease clinical trials at University of California Health
7 in progress, 0 open to eligible people
ALTERRA: SAPIEN 3 THV With the Alterra Adaptive Prestent
Sorry, in progress, not accepting new patients
To demonstrate the safety and effectiveness of the Edwards Alterra Adaptive Prestent in conjunction with the Edwards SAPIEN 3 Transcatheter Heart Valve (THV) System in subjects with a dysfunctional right ventricular outflow tract/pulmonary valve (RVOT/PV) who are indicated for treatment of pulmonary regurgitation (PR). Following completion of enrollment, subjects will be eligible for enrollment in the continued access phase of the trial.
at UCLA UCSF
Biomarkers, Genomics, Physiology in Critically Ill and ECMO Patients
Sorry, in progress, not accepting new patients
Patients in end-stage cardiac failure and/or respiratory failure may be started on a rescue therapy known as Extracorporeal Membrane Oxygenation (ECMO). One of the major clinical questions is how to manage the ventilator when patients are on ECMO therapy. Ventilator Induced Lung Injury (VILI) can result from aggressive ventilation of the lung during critical illness. VILI and lung injury such as Acute Respiratory Distress Syndrome (ARDS) can further increase the total body inflammation and stress, this is known as biotrauma. Biotrauma is one of the mechanisms that causes multi-organ failure in critically ill patients. One advantage of ECMO is the ability to greatly reduce the use of the ventilator and thus VILI by taking control of the patient's oxygenation and acid-base status. By minimizing VILI during ECMO we can reduce biotrauma and thus multi-organ failure. Since the optimal ventilator settings for ECMO patients are not known, we plan to study the impact of different ventilator settings during ECMO on patient's physiology and biomarkers of inflammation and injury.
at UCSD
Non-Invasive Measurement of Cardiac Output and Stroke Volume in PE
Sorry, accepting new patients by invitation only
Pulmonary embolism impacts over 1 in 1000 adults annually and is the third leading cause of cardiovascular death after heart attack and stroke. The consequence of each PE is widely variable. Physiologically, the morbidity and mortality of PE is ultimately caused by failure of the right ventricle. The acute rise in pulmonary vascular resistance caused by a PE can overwhelm the right ventricle, resulting in a drop in cardiac output and death from failure of the heart to provide vital perfusion. Despite the importance of stroke volume and cardiac output in the current understanding of PE mortality, they are notably absent from risk stratification scores because they historically could only be measured invasively. Novel non-invasive methods of estimating stroke volume and associated cardiac output have the potential to revolutionize PE risk stratification and care. Non-invasive blood pressure (NIBP) monitors can even measure stroke volume beat to beat, allowing for continuous evaluation of cardiac function. NIBP systems are typically composed of a finger cuff with an inflatable bladder, pressure sensors, and light sensors. An arterial pulse contour is formed using the volume clamp method of blood pressure measurement combined with calibration and brachial pressure reconstruction algorithms. The stroke volume with each heart beat can be estimated as the area under the systolic portion of the blood pressure curve divided by the afterload. NIBP monitors may improve clinical care of PE because they allow for assessment of dynamic cardiac changes in real time. Detection of worsening stroke volume in acute PE could inform providers of impending cardiac collapse, and improvement of stroke volume may function as a positive prognostic factor or marker of therapeutic success. Use of NIBP monitors during acute PE to identify clinically significant changes in cardiac function may advance both PE prognostication and management. Our clinical study proposes to monitor hemodynamic parameters including stroke volume in patients with acute pulmonary embolism using non-invasive blood pressure monitors. The relationship between hemodynamic parameters and PE outcomes will be assessed, as well as the changes in hemodynamic parameters with PE intervention. To our knowledge, interval monitoring of stroke volume during acute PE with NIBP monitors has never been reported before.
at UCLA
DECAMP 1 PLUS: Prediction of Lung Cancer Using Noninvasive Biomarkers
Sorry, in progress, not accepting new patients
DECAMP 1 PLUS aims to improve the efficiency of the diagnostic evaluation of patients with indeterminate pulmonary nodules (8-25 mm). Molecular biomarkers for lung cancer diagnosis measured in minimally invasive and non-invasive biospecimens may be able to distinguish between malignant or benign indeterminate pulmonary nodules in high-risk smokers. Ultimately, this study aims to validate molecular as well as clinical and imaging biomarkers of lung cancer in individuals with indeterminate lung nodules.
at UCLA
DECAMP-2: Screening of Patients With Early Stage Lung Cancer or at High Risk for Developing Lung Cancer
Sorry, in progress, not accepting new patients
The goal of this project is to improve lung cancer screening in high-risk individuals by identifying biomarkers of preclinical disease and disease risk that are measured in minimally invasive and non-invasive biospecimens. Existing biomarkers for lung cancer diagnosis as well as new biomarkers discovered specifically in this clinical setting will be examined. Biomarkers that identify individuals at highest risk for being diagnosed with lung cancer prior to the appearance of concerning symptoms could increase the utility of lung cancer surveillance and the efficiency of lung cancer chemoprevention clinical trials. Achieving these goals would improve the detection and treatment of early stage and incipient lung cancer, while restricting the risk of these procedures to those individuals who currently exhibit the early molecular warning signs of impending disease.
at UCLA
Distribution of Ventilation, Respiratory Drive and Gas Exchange: Measurements and Monitoring
Sorry, accepting new patients by invitation only
Respiratory physiology involves a complex interplay of elements including control of breathing, respiratory drive, pulmonary mechanics, distribution of ventilation and gas exchange. Body position may also play an important role in respiratory mechanics. While effective methods exist for measuring these variables, they are typically measured in isolation rather than in combination. In pulmonary disease, decreasing mechanical stress and strain and optimizing transpulmonary pressure or the distending pressure across the lung, minimizing overdistention and collapse are central to clinical management. Obesity has a significant impact on pulmonary mechanics and is a risk factor for obstructive sleep apnea (OSA). However, our understanding of these elements is limited even in the general population. The investigators plan to use various validated methods to assess control of breathing, respiratory drive, distribution of ventilation and gas exchange to obtain a better understanding of underlying physiologic signatures in patients with and without obesity and the role of posture/position, with a secondary analysis comparing participants with and without obstructive sleep apnea.
at UCSD
Ventilation and Perfusion in the Respiratory System
Sorry, accepting new patients by invitation only
Respiratory failure occurs when the lung fails to perform one or both of its roles in gas exchange; oxygenation and/or ventilation. Presentations of respiratory failure can be mild requiring supplemental oxygen via nasal cannula to more severe requiring invasive mechanical ventilation as see in acute respiratory distress syndrome (ARDS).It is important to provide supportive care through noninvasive respiratory support devices but also to minimize risk associated with those supportive devices such as ventilator induced lung injury (VILI) and/or patient self-inflicted lung injury (P-SILI). Central to risk minimization is decreasing mechanical stress and strain and optimizing transpulmonary pressure or the distending pressure across the lung, minimizing overdistention and collapse. Patient positioning impacts ventilation/perfusion and transpulmonary pressure. Electrical impedance tomography (EIT) is an emerging technology that offers a noninvasive, real-time, radiation free method to assess distribution of ventilation at the bedside. The investigators plan to obtain observational data regarding distribution of ventilation during routine standard of care in the ICU, with special emphasis on postural changes and effects of neuromuscular blockade, to provide insight into ventilation/perfusion matching, lung mechanics in respiratory failure, other pulmonary pathological processes.
at UCSD
Our lead scientists for Pulmonary Disease research studies include Alex Pearce Jamil Aboulhosn Denise Aberle, MD Robert L Owens, MD Richard N Channick, M.D..
Last updated: