Skip to main content

Subarachnoid Hemorrhage clinical trials at UC Health

4 in progress, 3 open to eligible people

Showing trials for
  • Lumbar Drain vs Extraventricular Drain to Prevent Vasospasm in Subarachnoid Hemorrhage

    open to eligible people ages 18-110

    Vasospasm is a common complication after rupture of intracranial aneurysms causing devastating neurologic deficits and death. Vasospasm has been directly associated with the amount of subarachnoid blood inside the basal cisterns. Prior literature has attempted to refine treatment of ruptured intracranial aneurysms but does not have clear guidelines on the optimal method to drain subarachnoid blood. Two methods, extraventricular drain (EVD) and lumbar drain (LD) have been compared retrospectively yet remain controversial as to which method is optimal in reducing subarachnoid blood and preventing vasospasm. This study would be a prospective randomized trial in which patients would be assigned to EVD or LD and observed to see if one method of intervention is associated with preventing clinical vasospasm, decreasing subarachnoid blood, shortening overall ICU stay, and reducing the need for a permanent ventriculoperitoneal shunt. The conclusions of this study may identify an optimal treatment modality to benefit all future patients with ruptured intracranial aneurysms.

    at UCSD

  • NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

    open to eligible people ages 18 years and up

    This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), and Duke University Medical Center. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

    at UCSF

  • Stroke Recovery Initiative - Registry for Stroke Research Studies

    open to eligible people ages 18 years and up

    The Stroke Recovery Initiative is a nation-wide participant recruitment registry that connects people who have had a stroke with researchers who are working to develop new approaches to improve recovery after stroke.

    at UCSF

  • Efficacy of Bromocriptine For Fever Reduction in Acute Neurologic Injury

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate the antipyretic effect of bromocriptine in critically-ill patients with acute neurologic injury and fever from infectious and non-infectious etiologies.

    at UCSF

Last updated: