Ureteral Cancer clinical trials at University of California Health
10 in progress, 3 open to eligible people
LOXO-435 in Participants With Cancer With a Change in a Gene Called FGFR3
open to eligible people ages 18 years and up
The main purpose of this study is to learn more about the safety, side effects, and effectiveness of LOXO-435. LOXO-435 may be used to treat cancer of the cells that line the urinary system and other solid tumor cancers that have a change in a particular gene (known as the FGFR3 gene). Participation could last up to 30 months (2.5 years) and possibly longer if the disease does not get worse.
at UCLA
Comparing the New Anti-cancer Drug Eribulin With Chemotherapy Against the Usual Chemotherapy Alone in Metastatic Urothelial Cancer
“Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”
open to eligible people ages 18 years and up
This phase III trial compares the usual chemotherapy treatment to eribulin plus gemcitabine in treating patients with urothelial cancer that has spread to other places in the body (metastatic). Chemotherapy drugs, such as eribulin, gemcitabine, docetaxel, paclitaxel, and sacituzumab govitecan work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial aims to see whether adding eribulin to standard of care chemotherapy may work better in treating patients with metastatic urothelial cancer.
at UC Davis UC Irvine
ORACLE: Observation of ResiduAl Cancer With Liquid Biopsy Evaluation
open to eligible people ages 18 years and up
The purpose of ORACLE is to demonstrate the ability of a novel ctDNA assay developed by Guardant Health to detect recurrence in individuals treated for early-stage solid tumors. It is necessary that ctDNA test results are linked to clinical outcomes in order to demonstrate clinical validity for recurrence detection and explore its value in a healthcare environment subject to cost containment.
at UCSD
Enfortumab Vedotin Alone or With Other Therapies for Treatment of Urothelial Cancer
Sorry, in progress, not accepting new patients
This study will test an experimental drug (enfortumab vedotin) alone and with different combinations of anticancer therapies. Pembrolizumab is an immune checkpoint inhibitor (CPI) that is used to treat patients with cancer of the urinary system (urothelial cancer). This type of cancer includes cancer of the bladder, renal pelvis, ureter or urethra. Some parts of the study will look at locally advanced or metastatic urothelial cancer (la/mUC), which means the cancer has spread to nearby tissues or to other areas of the body. Other parts of the study will look at muscle-invasive bladder cancer (MIBC), which is cancer at an earlier stage that has spread into the muscle wall of the bladder. This study will look at the side effects of enfortumab vedotin alone and with other anticancer therapies. A side effect is a response to a drug that is not part of the treatment effect. This study will also test if the cancer shrinks with the different treatment combinations.
at UC Davis UC Irvine UCSD UCSF
Enfortumab Vedotin Versus (vs) Chemotherapy in Subjects With Previously Treated Locally Advanced or Metastatic Urothelial Cancer (EV-301)
Sorry, in progress, not accepting new patients
The purpose of this study was to compare the overall survival (OS) of participants with locally advanced or metastatic urothelial cancer treated with enfortumab vedotin (EV) to the OS of participants treated with chemotherapy. This study compared progression-free survival on study therapy (PFS1); the overall response rate (ORR) and the disease control rate (DCR) per Response Evaluation Criteria in Solid Tumors (RECIST) V1.1 of participants treated with EV to participants treated with chemotherapy. In addition, this study evaluated the duration of response (DOR) per RECIST V1.1 of EV and chemotherapy and assessed the safety and tolerability of EV, as well as, the quality of life (QOL) and Patient Reported Outcomes (PRO) parameters.
at UC Irvine
Atezolizumab With or Without Eribulin Mesylate in Treating Patients With Recurrent Locally Advanced or Metastatic Urothelial Cancer
Sorry, in progress, not accepting new patients
This phase II trial studies the side effects of atezolizumab with or without eribulin mesylate and how well they work in treating patients with urothelial cancer that has come back (recurrent), spread to nearby tissues or lymph nodes (locally advanced), or spread from where it first started (primary site) to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as eribulin mesylate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab and eribulin mesylate may work better at treating urothelial cancer compared to atezolizumab alone.
at UC Davis UC Irvine
Cabozantinib S-malate and Nivolumab With or Without Ipilimumab in Treating Patients With Metastatic Genitourinary Tumors
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best doses of cabozantinib s-malate and nivolumab with or without ipilimumab in treating patients with genitourinary (genital and urinary organ) tumors that have spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving cabozantinib s-malate and nivolumab alone or with ipilimumab works better in treating patients with genitourinary tumors.
at UC Davis
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors
Sorry, in progress, not accepting new patients
This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
at UC Davis UC Irvine UCSD
Testing MK-3475 (Pembrolizumab) After Surgery for Localized Muscle-Invasive Bladder Cancer and Locally Advanced Urothelial Cancer
Sorry, in progress, not accepting new patients
This phase III trial studies how well pembrolizumab works in treating patients with bladder cancer that has spread into the deep muscle of the bladder wall (muscle-invasive) or urothelial cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced). Monoclonal antibodies recognizing and blocking checkpoint molecules can enhance the patient's immune response and therefore help fight cancer. Pembrolizumab is one of the monoclonal antibodies that block the PD-1 axis and can interfere with the ability of tumor cells to grow.
at UC Davis UCSD
Anti-cancer Drug, Cabozantinib, to the Usual Immunotherapy Treatment, Avelumab, in Patients With Metastatic Urothelial Cancer, MAIN-CAV Study
Sorry, in progress, not accepting new patients
This phase III trial compares the effect of adding cabozantinib to avelumab versus avelumab alone in treating patients with urothelial cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and avelumab together may further shrink the cancer or prevent it from returning/progressing.
at UC Davis
Our lead scientists for Ureteral Cancer research studies include Terence Friedlander Primo N. Lara Nataliya Mar.
Last updated: