Wilms Tumor clinical trials at University of California Health
19 in progress, 5 open to eligible people
Combination Chemotherapy for Patients With Newly Diagnosed DAWT and Relapsed FHWT
“Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”
open to eligible people ages up to 30 years
This phase II trial studies how well combination chemotherapy works in treating patients with newly diagnosed stage II-IV diffuse anaplastic Wilms tumors (DAWT) or favorable histology Wilms tumors (FHWT) that have come back (relapsed). Drugs used in chemotherapy regimens such as UH-3 (vincristine, doxorubicin, cyclophosphamide, carboplatin, etoposide, and irinotecan) and ICE/Cyclo/Topo (ifosfamide, carboplatin, etoposide, cyclophosphamide, and topotecan) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out what effects, good and/or bad, regimen UH-3 has on patients with newly diagnosed DAWT and standard risk relapsed FHWT (those treated with only 2 drugs for the initial WT) and regimen ICE/Cyclo/Topo has on patients with high and very high risk relapsed FHWT (those treated with 3 or more drugs for the initial WT).
at UC Davis UCLA UCSF
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)
open to eligible people ages 12 months to 21 years
This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)
open to eligible people ages 12 months to 21 years
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
at UC Davis UCLA UCSF
Tegavivint for the Treatment of Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid Tumors
open to eligible people ages 12 months to 30 years
This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.
at UCSF
Kidney Tumors in Younger Patients
open to eligible people ages up to 29 years
This research trial studies kidney tumors in younger patients. Collecting and storing samples of tumor tissue, blood, and urine from patients with cancer to study in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.
at UC Davis UCLA UCSF
Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors
Sorry, in progress, not accepting new patients
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
at UC Davis UCSF
Combination Chemotherapy and Surgery in Treating Young Patients With Wilms Tumor
Sorry, in progress, not accepting new patients
This phase III trial studies how well combination chemotherapy and surgery work in treating young patients with Wilms tumor. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Giving combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving it after surgery may kill any tumor cells that remain after surgery.
at UC Davis UCSF
Combination Chemotherapy With or Without Radiation Therapy in Treating Young Patients With Newly Diagnosed Stage III or Stage IV Wilms' Tumor
Sorry, in progress, not accepting new patients
This phase III trial is studying how well combination chemotherapy with or without radiation therapy works in treating young patients with newly diagnosed stage III or stage IV Wilms' tumor. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving more than one drug (combination chemotherapy) with or without radiation therapy may kill more tumor cells.
at UC Davis UCSF
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
at UC Davis UCLA UCSF
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
at UC Davis UCLA UCSF
Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCLA UCSF
Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
at UC Davis UCLA UCSF
Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
at UCLA UCSF
Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
at UC Davis UCLA UCSF
Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
at UCLA UCSF
Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UCSF
Vincristine, Dactinomycin, and Doxorubicin With or Without Radiation Therapy or Observation Only in Treating Younger Patients Who Are Undergoing Surgery for Newly Diagnosed Stage I, Stage II, or Stage III Wilms' Tumor
Sorry, in progress, not accepting new patients
This phase III trial is studying vincristine, dactinomycin, and doxorubicin with or without radiation therapy or observation only to see how well they work in treating patients undergoing surgery for newly diagnosed stage I, stage II, or stage III Wilms' tumor. Drugs used in chemotherapy, such as vincristine, dactinomycin, and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors.Giving these treatments after surgery may kill any tumor cells that remain after surgery. Sometimes, after surgery, the tumor may not need additional treatment until it progresses. In this case, observation may be sufficient.
at UC Davis UCLA UCSF
Our lead scientists for Wilms Tumor research studies include Noah C. Federman Jennifer G. Michlitsch Marcio H. Malogolowkin Eduard H. Panosyan Arun A. Rangaswami Kieuhoa T. Vo.
Last updated: