Skip to main content

Congenital Heart Defects clinical trials at UC Health

13 in progress, 6 open to eligible people

Showing trials for
  • COMPASSION S3 - Evaluation of the SAPIEN 3 Transcatheter Heart Valve in Patients With Pulmonary Valve Dysfunction

    open to all eligible people

    The purpose of this study is to evaluate the hypothesis that valve dysfunction of the Edwards Lifesciences SAPIEN 3 Transcatheter Heart Valve (THV) System is within the performance goal of 25% in subjects with a dysfunctional right ventricular outflow tract (RVOT) conduit or previously implanted valve in the pulmonic position with a clinical indication for intervention.

    at UCLA UCSF

  • Congenital Heart Disease GEnetic NEtwork Study (CHD GENES)

    open to eligible people ages up to 99 years

    Congenital heart defects (CHD) are the most common major human birth malformation, affecting ~8 per 1,000 live births. CHD are associated with significant morbidity and mortality, and are second only to infectious diseases in contributing to the infant mortality rate. Current understanding of the etiology of pediatric cardiovascular disorders is limited. The Congenital Heart Disease GEnetic NEtwork Study (CHD GENES) is a multi-center, prospective observational cohort study. Participants will be recruited from the Pediatric Cardiac Genomics Consortium's (PCGC) centers of the NHLBI-sponsored Bench to Bassinet (B2B) Program. Biological specimens will be obtained for genetic analyses, and phenotype data will be collected by interview and from medical records. State-of-the-art genomic technologies will be used to identify common genetic causes of CHD and genetic modifiers of clinical outcome. To accomplish this, the PCGC will develop and maintain a biorepository of specimens (DNA) and genetic data, along with detailed, phenotypic and clinical outcomes data in order to investigate relationships between genetic factors and phenotypic and clinical outcomes in congenital heart disease.

    at UCSF

  • Feraheme As An MRI Contrast Agent For Pediatric Congenital Heart Disease

    open to eligible people ages up to 6 years

    The standard clinical cardiovascular MRI practice for children with CHD frequently involves the use of gadolinium-based contrast agents (GBCA) to enhance tissue contrast. Most GBCAs are small molecules that quickly cross the capillary wall and access the interstitial space, a process which diminishes the signal contrast between blood vessels and surrounding tissue. Therefore, these types of GBCA are most useful for first-pass MR angiography, wherein the images are acquired quickly during the initial 15-30 seconds post-injection when the GBCA concentration is much higher in the arteries than in the interstitial space. For young children with complex CHD, the stringent requirements for high spatial resolution, and the need for cardiac gating and good blood-myocardium contrast in order to provide detailed evaluation of intracardiac structures are not compatible with conventional GBCA-based first-pass MR angiography. Even with Ablavar® (gadofosveset trisodium), an FDA approved GBCA with longer intravascular half-life than other GBCAs, cardiac-gated Ablavar®-enhanced MRI may be insufficient for young children with CHD based on our institutional experience and on data from the literature; there remains diminished blood-tissue contrast during the high-resolution cardiac-gated MRI. Furthermore, there have been safety concerns regarding gadolinium deposition in brain tissues after repeated GBCA exposure as well as concerns of nephrogenic systemic fibrosis (NSF) associated with GBCA injection in young children < 2 years old who may have immature renal function. The long-term health consequences of these effects in the pediatric population are unclear. For the above reasons, we seek to study the diagnostic imaging effectiveness of Feraheme (Feraheme®), an FDA-approved drug for parenteral iron supplementation, as an MRI contrast agent in children with CHD. Although Feraheme® has been approved for the treatment of iron deficiency anemia secondary to renal disease, Feraheme® has been used as an off-label MRI contrast agent at select medical centers.

    at UCLA

  • Multicenter Study of Congenital Pulmonic Valve Dysfunction Studying the SAPIEN 3 THV With the Alterra Adaptive Prestent

    open to all eligible people

    To demonstrate the safety and effectiveness of the Edwards Alterra Adaptive Prestent in conjunction with the Edwards SAPIEN 3 Transcatheter Heart Valve (THV) System in subjects with a dysfunctional right ventricular outflow tract/pulmonary valve (RVOT/PV) who are indicated for treatment of pulmonary regurgitation (PR).

    at UCLA UCSF

  • National Collaborative to Improve Care of Children With Complex Congenital Heart Disease

    open to eligible people ages up to 15 months

    The purpose of this initiative is to improve care and outcomes for infants with HLHS by expanding the NPC-QIC national registry to gather clinical care process, outcome, and developmental data on infants with HLHS between diagnosis and 12 months of age, by improving the use of standards into everyday practice across pediatric cardiology centers, and by engaging parents as partners in the process.

    at UC Davis UCLA

  • The Medtronic Harmony™ Transcatheter Pulmonary Valve Clinical Study

    open to all eligible people

    The purpose of this study is to further evaluate the safety and effectiveness of the Harmony™ TPV system.

    at UCLA

  • ATrial Tachycardia PAcing Therapy in Congenital Heart

    Sorry, not currently recruiting here

    Congenital heart disease (CHD) affects approximately 1% of newborns in the US, with 25% of those affected having critical conditions requiring open heart surgery within one year of birth. Surgical and medical advances have allowed many patients to live beyond their fourth and fifth decades of life. Unfortunately, cardiac arrhythmias are a relatively common sequela due to cardiac anomalies and surgical scars in addition to residual volume and pressure load on the heart. Atrial arrhythmias, including sinus node dysfunction and intra-atrial re-entrant tachycardia (IART) are among the more common abnormalities found in adults with repaired CHD. The presence of IART significantly increases morbidity and mortality, and anti-arrhythmic medications have been shown to be a sub-optimal treatment strategy with the majority of patients requiring multi-drug therapy. Catheter ablation procedures remain a treatment option, but are less successful for some patient demographics. In the mid-1990's, pacemakers with atrial anti-tachycardia pacing (ATP) capabilities were developed, primarily for the management of atrial flutter and fibrillation in adults with structurally normal hearts. Given the need for pacemakers in the CHD population to manage sinus node dysfunction and atrioventricular node conduction block, the adoption of atrial anti-tachycardia pacemakers began to gain favor. However, there is limited data available comparing the safety and effectiveness of ATP therapy between various demographics of CHD patients. In the current study, the investigators aim to determine if ATP is an effective treatment strategy for IART, specifically within particular sub-populations of CHD patients. Additionally, investigators hope to delineate any significant differences in efficacy of ATP treatment between adult and pediatric congenital heart patients. The research team will accomplish our goals with a retrospective, multi-center study in which data is collected from existing electronic medical records and pacemaker interrogations. Following data collection, the investigators will employ statistical analyses to determine if certain CHD demographics are statistically significant predictors of ATP therapy outcomes. The purpose of this prospective/retrospective study is to determine how effective atrial anti-tachycardia therapies are with the congenital heart patients who are known to have atrial arrhythmias. As this population ages, we know that arrhythmic burden increases and medications are increased or changed for symptomatic improvement. Patients will be enrolled at the time of anti tachycardia device (ATD) placement or when device therapies are turned on. Patients will need a minimum of 5 years of clinical history prior to implantation and after implantation (unless patient is very young). Data will be collected both retrospectively and prospectively. The research team will consent patients at the time of clinical evaluations and scheduled follow-ups (usually 3 - 6 months). If therapy is effective, investigators will determine the specific programming which was successful. If therapy was ineffective, investigators will also determine if a change in programing was made and if this improved ATP efficacy. Investigators will also determine the arrhythmia burden. Cardioversion and medications before and after ATD implantation will be the key determinants of arrhythmia burden in this study.

    at UCLA

  • Clinical Study Assessing the Efficacy and Safety of Macitentan in Fontan-palliated Subjects

    Sorry, in progress, not accepting new patients

    The primary objective is to assess the effect of macitentan 10 mg as compared to placebo on exercise capacity through cardiopulmonary exercise testing.

    at UCLA

  • Erythropoietin to Prevent Unnecessary Transfusions In Patients With Cyanotic CHD - A Prospective Control Trial

    Sorry, in progress, not accepting new patients

    Cyanotic congenital cardiac patients require higher hemoglobin concentrations (red blood cell levels) for optimal oxygen delivery to the body. Prophylactic erythropoietin (EPO) and iron can prevent and/or decrease the amount of blood transfusions needed in this population. We seek to investigate if EPO and iron make a clinically significant difference in the number of transfusions given to these patients and the morbidity associated with it.

    at UCSD

  • Improving Critical Congenital Heart Disease Screening With Addition of Perfusion Measurements

    Sorry, accepting new patients by invitation only

    The purpose of this research is to evaluate and create a new clinical prediction model for CCHD screening that combines non-invasive measurements of oxygenation and perfusion.

    at UC Davis UCLA UCSF

  • Outcomes and Health Care Resource Utilization in Pediatric Congenital Heart Disease Patients Undergoing Non-Cardiac Procedures

    Sorry, not currently recruiting here

    The incidence of moderate to severe congenital heart disease (CHD) in the United States is estimated to be 6 per 1000 live-born full term infants. Recent advances in pediatric cardiology, surgery and critical care have significantly improved the survival rates of patients with CHD leading to an increase in prevalence in both children and adults. Children with CHD significant enough to require cardiac surgery frequently also undergo non-cardiac surgical procedures. Analysis of the Pediatric Health Information System database between 2004 and 2012 demonstrated that 41% of children who had undergone surgery to correct CHD in the first year of life also underwent at least one non-cardiac surgery by age 5. With this increased demand for non-cardiac procedures, anesthesiologists, pediatricians and other healthcare providers will encounter patients with repaired or unrepaired CHD and other cardiac diseases in their practice. However, the information provided by national databases lack granularity and the information from single institutional data is limited. This project aims to address this knowledge gap in quantifying the risk for cardiac patients coming for noncardiac procedures and identify the health care resource utilization and system to best care for this patient population. To conduct this study, we will create a multi-institutional collaboration between large and small centers to create a unique dataset spanning all the different variables that need to be considered in risk prediction for these patients including patient variables, hospital setting, and providers. The aggregate multiinstitutional data set may be used for benchmarking for national quality improvement efforts.

    at UCLA

  • Pharmacokinetics and Safety Profile of Digoxin in Infants With Single Ventricle Congenital Heart Disease

    Sorry, accepting new patients by invitation only

    This is a prospective, multi-center, open-label, PK and safety profile study of enteral digoxin in children <6 months old at time of enrollment, post-surgical or hybrid stage 1 palliation, but prior to surgical stage 2 palliation.

    at UCLA

  • Specialized Pacing for Patients With Congenital Heart Disease

    Sorry, not yet accepting patients

    The closed-loop stimulation (CLS) algorithm is a novel sensor-based technology that relies on the change in myocardial systolic impedance for modulation of the heart rate during physical and emotional stress.3 The pacing algorithm has been shown to be highly effective for a wide range of clinical scenarios. Despite the fact that congenital heart disease (CHD) patients are likely to derive significant benefit in terms of functional ability and aerobic capacity using this novel technology, the CLS system has not been adequately studied in this population. As many CHD patients also undergo epicardial placement of pacing systems at the time of concomitant cardiac surgery, CLS has been less often utilized in this population given almost no data in the setting of surgical electrode placement. The present study intends to examine the benefits of the CLS algorithm in the CHD population, employing the use of epicardial pacemaker systems in the study protocol.

    at UCLA

Last updated: