The purpose of this study is to implement and externally validate an inpatient ML algorithm that combines pulse oximetry features for critical congenital heart disease (CCHD) screening.
The study will externally validate an algorithm that combines non-invasive oxygenation and perfusion measurements as a screening tool for CCHD. In a previous study, the investigators created an algorithm that combines non-invasive measurements of oxygenation and perfusion over at least two measurements using machine learning (ML) techniques. The prior model was created and tested using internal validation (k-fold validation). Thus, the investigators will test the model on an external sample of patients to test generalizability of the model. Additionally, the team will trial a repeated measurement for any "failure" of the screen to assess impact on the false positive rate. Study team will also use repeated pulse oximetry measurements (up to 4 total and including measurements after 48 hours of age, which may be done outpatient) to create a new algorithm that incorporates new data over time. The central hypothesis is that the addition of non-invasive perfusion measurements will be superior to SpO2-alone screening for CCHD detection and a model that incorporates repeated measurements will enhance detection of CCHD while preserving the specificity.