Medulloblastoma clinical trials at University of California Health
21 in progress, 3 open to eligible people
DFMO as Maintenance Therapy for Molecular High/Very High Risk and Relapsed Medulloblastoma
open to eligible people ages up to 21 years
Difluoromethylornithine (DFMO) will be used in an open label, multicenter, study as Maintenance Therapy for Molecular High Risk/Very High Risk and Relapsed/Refractory Medulloblastoma.
at UCSF
Flavored, Oral Irinotecan VAL-413 (Orotecan®) Given With Temozolomide for Treatment of Recurrent Pediatric Solid Tumors
open to eligible people ages 1-30
A pilot pharmacokinetic trial to determine the safety and efficacy of a flavored, orally administered irinotecan VAL-413 (Orotecan®) given with temozolomide for treatment of recurrent pediatric solid tumors including but not limited to neuroblastoma, rhabdomyosarcoma, Ewing sarcoma, hepatoblastoma and medulloblastoma
at UCSF
Individualized Treatment Plan in Children and Young Adults With Relapsed Medulloblastoma
open to eligible people ages 12 months to 39 years
The current study will use a new treatment approach based on the molecular characteristics of each participant's tumor. The study will test the feasibility of performing real-time drug screening on tissue taken during surgery, and of having a specialized tumor board assign a treatment plan based on the results of this screening and genomic sequencing. The aim of this trial is to allow every child and young adult with medulloblastoma to receive the most effective and least toxic therapies currently available, and will pave the way for improved understanding and treatment of these tumors in the future.
at UCSF
Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients With Newly Diagnosed WNT-Driven Medulloblastoma
Sorry, in progress, not accepting new patients
This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT)/Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.
at UC Davis UCLA UCSF
Treatment for Medulloblastoma Using Sodium Thiosulfate to Reduce Hearing Loss
Sorry, currently not accepting new patients, but might later
This phase III trial tests two hypotheses in patients with low-risk and average-risk medulloblastoma. Medulloblastoma is a type of cancer that occurs in the back of the brain. The term, risk, refers to the chance of the cancer coming back after treatment. Subjects with low-risk medulloblastoma typically have a lower chance of the cancer coming back than subjects with average-risk medulloblastoma. Although treatment for newly diagnosed average-risk and low-risk medulloblastoma is generally effective at treating the cancer, there are still concerns about the side effects of such treatment. Side effects or unintended health conditions that arise due to treatment include learning difficulties, hearing loss or other issues in performing daily activities. Standard therapy for newly diagnosed average-risk or low-risk medulloblastoma includes surgery, radiation therapy, and chemotherapy (including cisplatin). Cisplatin may cause hearing loss as a side effect. In the average-risk medulloblastoma patients, this trial tests whether the addition of sodium thiosulfate (STS) to standard of care chemotherapy and radiation therapy reduces hearing loss. Previous studies with STS have shown that it may help reduce or prevent hearing loss caused by cisplatin. In the low-risk medulloblastoma patients, the study tests whether a less intense therapy (reduced radiation) can provide the same benefits as the more intense therapy. The less intense therapy may cause fewer side effects. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. The overall goals of this study are to see if giving STS along with standard treatment (radiation therapy and chemotherapy) will reduce hearing loss in medulloblastoma patients and to compare the overall outcome of patients with medulloblastoma treated with STS to patients treated without STS on a previous study in order to make sure that survival and recurrence of tumor is not worsened.
at UCSF
Chemotherapy and Radiation Therapy in Treating Young Patients With Newly Diagnosed, Previously Untreated, High-Risk Medulloblastoma/PNET
Sorry, in progress, not accepting new patients
This phase III trial studies different chemotherapy and radiation therapy regimens to compare how well they work in treating young patients with newly diagnosed, previously untreated, high-risk medulloblastoma. Chemotherapy drugs, such as vincristine sulfate, cisplatin, cyclophosphamide, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. Carboplatin may make tumor cells more sensitive to radiation therapy. It is not yet known which chemotherapy and radiation therapy regimen is more effective in treating brain tumors.
at UC Davis UCLA UCSF
Combination Chemotherapy Followed By Peripheral Stem Cell Transplant in Treating Young Patients With Newly Diagnosed Supratentorial Primitive Neuroectodermal Tumors or High-Risk Medulloblastoma
Sorry, in progress, not accepting new patients
This randomized phase III trial is studying two different combination chemotherapy regimens to compare how well they work in treating young patients with newly diagnosed supratentorial primitive neuroectodermal tumors or high-risk medulloblastoma when given before additional intense chemotherapy followed by peripheral blood stem cell rescue. It is not yet known which combination chemotherapy regimen is more effective when given before a peripheral stem cell transplant in treating supratentorial primitive neuroectodermal tumors or medulloblastoma.
at UC Davis UCSF
Radiation Therapy Regimens in Combination With Chemotherapy in Treating Young Patients With Newly Diagnosed Standard-Risk Medulloblastoma
Sorry, in progress, not accepting new patients
This randomized phase III trial is studying how well standard-dose radiation therapy works compared to reduced-dose radiation therapy in children 3-7 years of age AND how well standard volume boost radiation therapy works compared to smaller volume boost radiation therapy when given together with chemotherapy in treating young patients who have undergone surgery for newly diagnosed standard-risk medulloblastoma. Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy, such as vincristine, cisplatin, lomustine, and cyclophosphamide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving radiation therapy with chemotherapy after surgery may kill any remaining tumor cells. It is not yet known whether standard-dose radiation therapy is more effective than reduced-dose radiation therapy when given together with chemotherapy after surgery in treating young patients with medulloblastoma.
at UC Davis UCSF
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Sorry, in progress, not accepting new patients
This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UCSF
HeadStart4: Newly Diagnosed Children (<10 y/o) With Medulloblastoma and Other CNS Embryonal Tumors
Sorry, in progress, not accepting new patients
This is a prospective randomized clinical trial, to determine whether dose-intensive tandem Consolidation, in a randomized comparison with single cycle Consolidation, provides an event-free survival (EFS) and overall survival (OS). The study population will be high-risk patients (non-Wnt and non-Shh sub-groups) with medulloblastoma, and for all patients with central nervous system (CNS) embryonal tumors completing "Head Start 4" Induction. This study will further determine whether the additional labor intensity (duration of hospitalizations and short-term and long-term morbidities) associated with the tandem treatment is justified by the improvement in outcome. It is expected that the tandem (3 cycles) Consolidation regimen will produce a superior outcome compared to the single cycle Consolidation, given the substantially higher dose intensity of the tandem regimen, without significant addition of either short-term or long-term morbidities.
at UCLA UCSF
Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
at UC Davis UCLA UCSF
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCLA UCSF
Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
at UC Davis UCLA UCSF
Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors
Sorry, in progress, not accepting new patients
A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).
at UCSF
Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)
Sorry, in progress, not accepting new patients
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
at UC Davis UCLA UCSF
Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
at UCLA UCSF
Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
at UC Davis UCLA UCSF
Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
at UCLA UCSF
Our lead scientists for Medulloblastoma research studies include Jennifer Michlitsch, MD Sabine Mueller, MD, PhD, MAS Kieuhoa Vo, M.D..
Last updated: