Skip to main content

Thyroid Cancer clinical trials at University of California Health

18 in progress, 10 open to eligible people

Showing trials for
  • A Study of Selpercatinib (LOXO-292) in Participants With Advanced Solid Tumors, RET Fusion-Positive Solid Tumors, and Medullary Thyroid Cancer (LIBRETTO-001)

    open to eligible people ages 12 years and up

    This is an open-label, first-in-human study designed to evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary anti-tumor activity of selpercatinib (also known as LOXO-292) administered orally to participants with advanced solid tumors, including rearranged during transfection (RET)-fusion-positive solid tumors, medullary thyroid cancer (MTC) and other tumors with RET activation.

    at UCLA UCSD UCSF

  • A Study of Selpercatinib (LY3527723) in Participants With RET-Mutant Medullary Thyroid Cancer

    open to eligible people ages 12 years and up

    The reason for this study is to see if the study drug selpercatinib is safe and more effective compared to a standard treatment in participants with rearranged during transfection (RET)-mutant medullary thyroid cancer (MTC) that cannot be removed by surgery or has spread to other parts of the body. Participants who are assigned to the standard treatment and discontinue due to progressive disease have the option to potentially crossover to selpercatinib.

    at UC Davis UCLA UCSF

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    open to eligible people ages 18 years and up

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    at UC Davis UC Irvine UCSD

  • Prospective Exploratory Study of FAPi PET/CT With Histopathology Validation in Patients With Various Cancers

    open to eligible people ages 18 years and up

    This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.

    at UCLA

  • Study of Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-3475-158/KEYNOTE-158)

    open to eligible people ages 18 years and up

    In this study, participants with multiple types of advanced (unresectable and/or metastatic) solid tumors who have progressed on standard of care therapy will be treated with pembrolizumab (MK-3475).

    at UCSF

  • Study of TPX-0046, A RET/SRC Inhibitor in Adult Subjects With Advanced Solid Tumors Harboring RET Fusions or Mutations

    open to eligible people ages 18 years and up

    A phase 1/2, first-in-human, open-label study to determine the safety, tolerability, PK, and preliminary efficacy of the novel RET/SRC inhibitor TPX-0046 in adult subjects with advanced or metastatic solid tumors harboring RET mutations or alterations. The study consists of three portions: 1) Phase 1 Dose Escalation and Food Effect Sub-study, and 2) Phase 1 dose expansion and 3) Phase 2 efficacy evaluation.

    at UC Irvine UCSD

  • Targeted therapy directed by genetic testing in treating patients with advanced solid tumors, lymphomas, or multiple myeloma

    “Will identifying genetic abnormalities in tumor cells help doctors plan better, more personalized treatment for cancer patients?”

    open to eligible people ages 18 years and up

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.

    at UC Davis UC Irvine UCSD

  • Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

    open to eligible people ages 12 months to 21 years

    This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

    at UC Davis UCLA UCSF

  • Development of Liquid Biopsy Technologies for Noninvasive Cancer Diagnostics in Patients With Suspicious Thyroid Nodules or Thyroid Cancer

    open to eligible people ages 18 years and up

    This study is being done to help researchers learn more about and successfully diagnose cancer using blood samples and tissue samples from surgeries in patients with suspicious thyroid nodules or thyroid cancer. Diagnosing cancer in this way, as opposed to biopsies, may be less invasive to the patient. Analyzing blood and tissues samples may also help researchers to differentiate non-cancerous tumors from thyroid cancer and detect high-risk mutations to guide treatment.

    at UCLA

  • Natural History of Medullary Thyroid Cancer to Inform Advanced Disease Management

    open to eligible people ages 18 years and up

    This study utilizes a multi-institutional registry to describe the natural history of medullary thyroid cancer that has spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) in understanding disease management. The goal of this study is to learn about how medullary thyroid cancer develops and progresses.

    at UCSF

  • Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

    Sorry, not currently recruiting here

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.

    at UC Irvine UCSD UCSF

  • Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.

    at UC Davis UCSF

  • Dabrafenib With or Without Trametinib in Treating Patients With Recurrent Thyroid Cancer

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well dabrafenib works with or without trametinib in treating patients with recurrent thyroid cancer. Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether dabrafenib is more effective when given with or without trametinib in treating thyroid cancer

    at UCSD

  • Iodine I-131 With or Without Selumetinib in Treating Patients With Recurrent or Metastatic Thyroid Cancer

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well iodine I-131 works with or without selumetinib in treating patients with thyroid cancer that has returned (recurrent) or has spread from where it started to other places in the body (metastatic). Many thyroid cancers absorb iodine. Due to this, doctors often give radioactive iodine (iodine I-131) alone to treat thyroid cancer as part of standard practice. It is thought that the more thyroid tumors are able to absorb radioactive iodine, the more likely it is that the radioactive iodine will cause those tumors to shrink. Selumetinib may help radioactive iodine work better in patients whose tumors still absorb radioactive iodine. It is not yet known whether iodine I-131 is more effective with or without selumetinib in treating thyroid cancer.

    at UCSD

  • Lenvatinib and Pembrolizumab in Differentiated Thyroid Cancers (DTC)

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well pembrolizumab and lenvatinib work in treating patients with differentiated thyroid cancer that has spread to other places in the body or has come back and cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    at UCLA

  • Phase 1/2 Study of the Highly-selective RET Inhibitor, Pralsetinib (BLU-667), in Participants With Thyroid Cancer, Non-Small Cell Lung Cancer, and Other Advanced Solid Tumors

    Sorry, in progress, not accepting new patients

    This is a Phase 1/2, open-label, first-in-human (FIH) study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antineoplastic activity of pralsetinib (BLU-667) administered orally in participants with medullary thyroid cancer (MTC), RET-altered NSCLC and other RET-altered solid tumors.

    at UC Irvine

  • Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

    at UC Davis

  • Expanded Access for the Treatment of Cancers With Rearranged During Transfection (RET) Activation

    Sorry, not accepting new patients

    Expanded access for participants with cancer with RET activation who are ineligible for an ongoing selpercatinib (also known as LOXO-292) clinical trial or have other considerations that prevent access to selpercatinib through an existing clinical trial. The treating physician/investigator contacts Lilly when, based on their medical opinion, a patient meets the criteria for inclusion in the expanded access program.

    at UCLA UCSD UCSF

Our lead scientists for Thyroid Cancer research studies include .

Last updated: