Skip to main content

Traumatic Brain Injury clinical trials at University of California Health

21 in progress, 11 open to eligible people

Showing trials for
  • Combined Neuromodulation and Cognitive Training for Post-mTBI Depression

    open to eligible people ages 18-65

    The primary goal of this clinical trial is to evaluate whether Personalized Augmented Cognitive Training (PACT) plus intermittent theta burst stimulation (iTBS) is effective for treating depression in Service Members, Veterans, and civilians who have sustained a mild TBI. Participants will receive PACT plus 20 sessions of iTBS or sham iTBS over 4 weeks. Assessments will occur at baseline, 2 weeks, 4 weeks, and 8 weeks. Researchers will compare the PACT+iTBS group to the PACT+sham iTBS group to see if PACT+iTBS is associated with more depression improvement.

    at UCSD

  • Combined Transcranial Magnetic Stimulation and Therapy for MTBI Related Headaches

    open to eligible people ages 18-65

    This study will assess the combined effectiveness of repetitive transcranial magnetic stimulation (rTMS) and telehealth based therapy in helping manage mild traumatic brain injury (mTBI) related headaches. The investigators hypothesize that active rTMS combined with telehealth therapy will provide marked reduction in mTBI related headaches and symptoms in comparison to their placebo counterparts.

    at UCSD

  • GOALS Cognitive Training Delivered to Aging Veterans in Person or Via Telehealth

    open to eligible people ages 65 years and up

    This study will use technology to deliver effective treatment for cognitive problems associated with TBI to Veterans at home, which may result in improved daily functioning and increased access to health care for the growing population of aging Veterans with history of TBI. The successful completion of this project may also increase older Veterans' ability to participate in research through increased understanding of the effect of in-home research opportunities on recruitment and retention. Additionally, the evidence gathered from this study may be used in future research studying home-based cognitive rehabilitation treatments for Veterans using telehealth technology.

    at UCSF

  • Hyperbaric Oxygen Brain Injury Treatment Trial

    open to eligible people ages 16-65

    The purpose of this innovative adaptive phase II trial design is to determine the optimal combination of hyperbaric oxygen treatment parameters that is most likely to demonstrate improvement in the outcome of severe TBI patients in a subsequent phase III trial.

    at UCSD

  • Brain Oxygen Optimization in Severe TBI, Phase 3

    “We want to hear your opinions about this study! Click the green button below to share.”

    open to eligible people ages 14 years and up

    BOOST3 is a randomized clinical trial to determine the comparative effectiveness of two strategies for monitoring and treating patients with traumatic brain injury (TBI) in the intensive care unit (ICU). The study will determine the safety and efficacy of a strategy guided by treatment goals based on both intracranial pressure (ICP) and brain tissue oxygen (PbtO2) as compared to a strategy guided by treatment goals based on ICP monitoring alone. Both of these alternative strategies are used in standard care. It is unknown if one is more effective than the other. In both strategies the monitoring and goals help doctors adjust treatments including the kinds and doses of medications and the amount of intravenous fluids given, ventilator (breathing machine) settings, need for blood transfusions, and other medical care. The results of this study will help doctors discover if one of these methods is more safe and effective.

    at UC Davis UCLA UCSF

  • Mild TBI Assessment & Rehabilitation

    open to eligible people ages 18 years and up

    One of the most pressing concerns within the VA currently is the provision of interventions that address the cognitive as well as emotional problems faced by Veterans with mild TBI and comorbid conditions. When completed, these studies will inform us whether training core attentional self-regulatory control functions via personally-relevant activities will be effective in improving daily life for Veterans with mild TBI and comorbid conditions. The study design will provide a test not only of potential benefits for real life functioning, but also determine to what extent these benefits are related to actual changes in cognitive/behavioral performance and brain networks corresponding to these functions. This project will provide a foundation for future studies to investigate the neural mechanisms that support improvements of cognition and behavior in mTBI.

    at UCSF

  • Retraining Neural Pathways Improves Cognitive Skills After A Mild Traumatic Brain Injury

    open to eligible people ages 18-60

    The proposed study tests the feasibility (Phase I) of PATH neurotraining to improve working memory and attention in mTBI patients rapidly and effectively to provide clinical testing of a therapeutic training for the remediation of cognitive disorders caused by a concussion. This study will contribute to the fundamental knowledge of how to remediate concussions from a mTBI to enhance the health, lengthen the life and reduce the disabilities that result from a mTBI.

    at UCSD

  • Amantadine Hydrochloride (HCl) Intravenous (IV) Solution (MR-301) in Patients With Severe Traumatic Brain Injury (TBI).

    open to eligible people ages 18-65

    The main goal of this clinical trial is to check if the treatment is safe and well-tolerated. Researchers will compare the MR-301 active drug group with the placebo group to evaluate the safety and tolerability of the drug. Other measurements include assessing the patient's overall outcome, neurological responses, time spent in the intensive care unit, time in the hospital, and mortality. Participants will receive either MR-301 BID IV dosing or a matching placebo for a total of 3 weeks.

    at UC Davis

  • Telerehabilitation Early After CNS Injury

    open to eligible people ages 18 years and up

    The goal of this clinical trial is to assess the safety and feasibility of providing extra doses of rehabilitation therapy for persons with a recent stroke, traumatic brain injury (TBI) and/or spinal cord injury (SCI). The therapy treatment targets to improve arm function by introducing telerehabilitation to the bedside of participants during the inpatient rehab admission period. Participants will use a newly developed functional training system (HandyMotion) to access therapy treatment program directly from their hospital room. HandyMotion is a sensor-based training system that can connect to the TV set in the hospital room, enabling patients to access their therapy training program to practice rehab-oriented games and exercises ad libitum, at any time of the day.

    at UCLA

  • NOninVasive Intracranial PrEssure from Transcranial DoppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

    open to eligible people ages 18 years and up

    This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), UC Davis, and Emory University. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

    at UC Davis UCSF

  • Screening Emotions in Adolescents at the Hospital for mTBI

    open to eligible people ages 11-17

    The goal of this observational study is to develop and validate a clinical tool to predict which adolescents aged 11 to less than 18 years of age with mild traumatic brain injury (mTBI) are at an increased risk for developing significant new or worsening mental health conditions. The main aims the study wish to answer are: - Does the adolescent have new or worsening depression or anxiety defined as a change from their previous medical history using self-reported questionnaires at either one or three months post-injury? - Does the adolescent have unmet mental health care needs, defined as not receiving any mental or behavior health care in patients with new or worsening anxiety or depression as defined by the self reported questionnaires? Participants will be enrolled after being diagnosed in the emergency department (ED) with an mTBI. During the ED visit, the child's parent/caregiver and the adolescent will complete several questionnaires related to mental health which include tools to measure anxiety and depression. Participants will be asked to complete these questionnaires again at 1 month and 3 months post enrollment.

    at UC Davis

  • ELI in TBI 24 Hour

    Sorry, not yet accepting patients

    This is a safety phase 2 clinical trial of intravenous infusion of sodium lactate in patients with severe TBI. This study is intended for patients in the acute setting in an intensive care unit at centers that have been selected to participate in this trial. This is a proof of safety study and biomarker response study.

    at UCLA

  • FFP in Traumatic BRAin INjury (FIT-BRAIN) Trial

    Sorry, not yet accepting patients

    The goal of this clinical trial is to learn about treatment with fresh frozen plasma (FFP) in individuals with moderate to severe traumatic brain injury. The two main question[s]it aims to answer are: - Is the FFP treatment safe? - Does the FFP treatment impact the 24-hour, 3-month and 6-month outcomes, intensive-care free days, mortality, and hospital brain and physical function at discharge. Patients with moderate to severe TBI will randomly receive either: - Standard of care treatment - Standard of care treatment + 2 units of FFP. Researchers will compare participants receiving standard of care treatment to those receiving experimental fresh frozen plasma (FFP) treatment to see if the FFP is safe and beneficial to participant outcomes.

    at UC Davis

  • Multi-Arm Multi-Stage Adaptive Platform Trial (APT) for the Acute Treatment of Traumatic Brain Injury

    Sorry, accepting new patients by invitation only

    The purpose of this study is to determine if experimental drug treatment improves recovery after TBI as compared to a control (placebo) group. Changes in recovery will be measured throughout the study. The study drugs listed below are approved by the U.S. Food and Drug Administration (FDA) but are being used "off-label" in this study. This means that the drugs are not currently approved to treat TBI.

    at UCSF

  • Personalized Brain Stimulation to Treat Chronic Concussive Symptoms

    Sorry, not yet accepting patients

    The goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: 1. Does personalized TMS improve brain connectivity after concussion? 2. Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? 3. Do the improvements last up to 2 months post-treatment? 4. Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): 1. One for the baseline symptom assessments and magnetic resonance imaging (MRI) 2. Ten for TMS administration 3. Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.

    at UCLA

  • TBI Rehabilitation and Activation in Veterans

    Sorry, not yet accepting patients

    This trial will evaluate the impact of a multicomponent program (TBI Rehabilitation and Activation in Veterans; TRAIN-Vets) on improving cognitive function over an 8-month trial period in older Veterans with traumatic brain injury (TBI). Older Veterans with a history of TBI and subjective cognitive complaints will be enrolled and randomly assign to either the TRAIN-Vets intervention (consisting of aquatic-based exercise training, cognitive training, and lifestyle coaching) or the Health Education Control, where they will receive educational materials about brain health and healthy lifestyles.

    at UCSF

  • Traumatic Injury Clinical Trial Evaluating Tranexamic Acid in Children: An Efficacy Study

    Sorry, not yet accepting patients

    Trauma is the leading cause of death and disability in children in the United States. The objective of this study is to evaluate the benefits and harms of tranexamic acid (TXA; a drug that stops bleeding) in severely injured children with hemorrhagic brain and/or torso injuries. Using thromboelastography, we will measure baseline fibrinolysis to assess for treatment effects of TXA at different levels of fibrinolysis.

    at UC Davis

  • Automated Robotic TCD in Traumatic Brain Injury

    Sorry, not yet accepting patients

    This study's objective is to determine the safety, feasibility and efficacy of prolonged automated robotic TCD monitoring in critically ill patients with severe TBI across multiple clinical sites with varying levels of TCD availability and experience

    at UC Davis

  • Biomarkers in the Hyperbaric Oxygen Brain Injury Treatment Trial (BioHOBIT)

    Sorry, not currently recruiting here

    There are no therapeutic agents that have been shown to improve outcomes from severe traumatic brain injury (TBI). Critical barriers to progress in developing treatments for severe TBI are the lack of: 1) monitoring biomarkers for assessing individual patient response to treatment; 2) predictive biomarkers for identifying patients likely to benefit from a promising intervention. Currently, clinical examination remains the fundamental tool for monitoring severe TBI patients and for subject selection in clinical trials. However, these patients are typically intubated and sedated, limiting the utility of clinical examinations. Validated monitoring and predictive biomarkers will allow titration of the dose of promising therapeutics to individual subject response, as well as make clinical trials more efficient by enabling the enrollment of subjects likely to benefit. Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and high sensitivity c-reactive protein (hsCRP) are promising biomarkers that may be useful as 1) monitoring biomarkers; 2) predictive biomarkers in severe TBI trials. Although the biological rationale supporting their use is strong, significant knowledge gaps remain. To address these gaps in knowledge, we propose an ancillary observational study leveraging an ongoing severe TBI clinical trial that is not funded to collect biospecimen. The Hyperbaric Oxygen in Brain Injury Treatment (HOBIT) trial, a phase II randomized control clinical trial that seeks to determine the dose of hyperbaric oxygen therapy (HBOT) that that has the highest likelihood of demonstrating efficacy in a phase III trial. The proposed study will: 1) validate the accuracy of candidate monitoring biomarkers for predicting clinical outcome; 2) determine the treatment effect of different doses of HBOT on candidate monitoring biomarkers; and 3) determine whether there is a biomarker defined subset of severe TBI that responds favorably to HBOT. This proposal will: 1) inform a go/no-go decision for a phase III trial of HBOT by providing adjunctive evidence of the effect of HBOT on key biological pathways through which HBOT is hypothesized to affect outcome; 2) provide evidence to support further study of the first monitoring biomarkers of severe TBI; 3) increase the likelihood of success of a phase III trial by identifying the sub-population of severe TBI likely to benefit from HBOT; 4) create a repository of TBI biospecimen which may be accessed by other investigators. This study is related to NCT04565119

    at UCSD

  • TRACK-TBI Longitudinal Biomarker Study

    Sorry, accepting new patients by invitation only

    The overarching goal of this study is to improve understanding of the long-range natural history of TBI by extending follow-up of a previously enrolled cohort (TRACK-TBI) beyond the first 12 months after injury.

    at UCSF

  • Transforming Research and Clinical Knowledge in Traumatic Brain Injury Epileptogenesis Project (TRACK-TBI EPI)

    Sorry, accepting new patients by invitation only

    The overarching goal of this study is to improve understanding of the long-range natural history of TBI and post-traumatic epilepsy (PTE) by extending follow-up of a previously enrolled cohort (TRACK-TBI) beyond the first 12 months after injury.

    at UCSF

Our lead scientists for Traumatic Brain Injury research studies include .

Last updated: