Skip to main content

Brain Cancer clinical trials at University of California Health

33 in progress, 14 open to eligible people

Showing trials for
  • Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.

    at UCLA

  • Comparing the Addition of Radiation Either Before or After Surgery for Patients With Brain Metastases

    open to eligible people ages 18 years and up

    This phase III trial compares the addition of stereotactic radiosurgery before or after surgery in treating patients with cancer that has spread to the brain (brain metastases). Stereotactic radiosurgery is a type of radiation therapy that delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Surgery and radiation may stop the tumor from growing for a few months or longer and may reduce symptoms of brain metastases.

    at UC Davis UC Irvine

  • Fluorine-18-AlphaVBeta6-Binding Peptide Positron Emission Tomography in Metastatic Non-Small Cell Lung Cancer

    open to eligible people ages 18 years and up

    This study investigates fluorine-18-AlphaVBeta6-BP ([18F]-αvβ6-BP) as a Positron Emission (PET) imaging agent in Non-Small Cell Lung Cancer (NSCLC) patients with brain metastases. Investigators hypothesize that [18F]-αvβ6-BP PET/Computed Tomography (CT) is a sensitive tool for disease assessment in patients with metastatic NSCLC, including those with brain metastases.

    at UC Davis

  • Genetic Testing in Guiding Treatment for Patients With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK, PI3K, or KRAS G12C. Medications that target these genes such as abemaciclib, paxalisib, entrectinib and adagrasib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.

    at UC Irvine UCSD

  • FAPi PET/CT With Histopathology Validation in Patients With Various Cancers

    open to eligible people ages 18 years and up

    This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.

    at UCLA

  • Stereotactic Radiosurgery Compared With Hippocampal-Avoidant Whole Brain Radiotherapy (HA-WBRT) Plus Memantine for 5 or More Brain Metastases

    open to eligible people ages 18 years and up

    Stereotactic radiosurgery (SRS) is a commonly used treatment for brain tumors. It is a one-day (or in some cases two day), out-patient procedure during which a high dose of radiation is delivered to small spots in the brain while excluding the surrounding normal brain. Whole brain radiation therapy with hippocampal avoidance (HA-WBRT) is when radiation therapy is given to the whole brain, while trying to decrease the amount of radiation that is delivered to the area of the hippocampus. The hippocampus is a brain structure that is important for memory. Memantine is a drug that is given to help relieve symptoms that can be caused by WBRT, including problems with memory and other mental symptoms. Health Canada, the regulatory body that oversees the use of drugs in Canada, has not approved the sale or use of memantine in combination with WBRT to treat this kind of cancer, although they have allowed its use in this study.

    at UC Irvine UCSD

  • Comparing Investigational Drug HBI-8000 Combined With Nivolumab vs. Nivolumab in Patients With Advanced Melanoma

    open to eligible people ages 12 years and up

    This is a phase 3 study to compare the efficacy and safety of HBI-8000 or Placebo combined with nivolumab on patients with unresectable or metastatic melanoma and eligible patients who are not adolescents or patients with new, progressive brain metastasis will be stratified by PD-L1 expression and LDH level.

    at UCSD

  • Testing Sacituzumab Govitecan Therapy in Patients With HER2-Negative Breast Cancer and Brain Metastases

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 18 years and up

    This phase II trial studies the effect of sacituzumab govitecan in treating patients with HER2-negative breast cancer that has spread to the brain (brain metastases). Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called govitecan. Sacituzumab is a form of targeted therapy because it attaches to specific molecules on the surface of cancer cells, known as Trop-2 receptors, and delivers govitecan to kill them. Giving sacituzumab govitecan may shrink the cancer in the brain and/or extend the time until the cancer gets worse.

    at UC Irvine

  • UCSD Image-Guided Cognitive-Sparing Radiosurgery for Brain Metastases

    open to eligible people ages 18 years and up

    In this proposal, the investigators introduce advanced diffusion and volumetric imaging techniques along with innovative, automated image parcellation methods to identify critical brain regions, incorporate into cognitive-sparing SRS, and analyze biomarkers of radiation response. This work will advance the investigators' understanding of neurocognitive changes after brain SRS and help create interventions that preserve cognitive-function in brain metastases patients.

    at UCSD

  • Patients Who Have Participated in Children's Oncology Group Studies

    open to all eligible people

    This clinical trial keeps track of and collects follow-up information from patients who are currently enrolled on or have participated in a Children's Oncology Group study. Developing a way to keep track of patients who have participated in Children's Oncology Group studies may allow doctors learn more about the long-term effects of cancer treatment and help them reduce problems related to treatment and improve patient quality of life.

    at UC Davis UCLA UCSF

  • Longitudinal Prospective Study of Neurocognition & Neuroimaging in Primary BT Patients

    open to eligible people ages 18-99

    In this proposal, the investigators introduce a novel, translational study to prospectively examine primary brain tumor patients undergoing fractionated radiation therapy to the brain. Quantitative neuroimaging, radiation dose information, and directed neurocognitive testing will be acquired through this study to improve understanding of cognitive changes associated with radiation dosage to non-targeted tissue, and will provide the basis for evidence-based cognitive- sparing brain radiotherapy.

    at UCSD

  • Registry of Patients With Brain Tumors Treated With STaRT (GammaTiles)

    open to all eligible people

    The objectives of this registry study are to evaluate real-world clinical outcomes and patient reported outcomes that measure the effectiveness and safety of STaRT.

    at UCSD

  • RECMAP-study: Resection With or Without Intraoperative Mapping for Recurrent Glioblastoma

    open to eligible people ages up to 90 years

    Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

    at UCSF

  • SUPRAMAX Study: Supramaximal Resection Versus Maximal Resection for High-Grade Glioma Patients (ENCRAM 2201)

    open to eligible people ages 18-90

    A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

    at UCSF

  • FIH Study of PF-07284890 in Participants With BRAF V600 Mutant Solid Tumors With and Without Brain Involvement

    Sorry, in progress, not accepting new patients

    First-in-human study to assess safety, tolerability, PK, and preliminary activity of PF-07284890 as a single agent and in combination with binimetinib in participants with BRAF V600-mutated advanced solid tumor malignancies with and without brain involvement.

    at UCSF

  • Phase 1-2 Study of ST101 in Patients With Advanced Solid Tumors

    Sorry, not currently recruiting here

    This is an open-label, two-part, phase 1-2 dose-finding study designed to determine the safety, tolerability, PK, PD, and proof-of-concept efficacy of ST101 administered IV in patients with advanced solid tumors. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.

    at UCSF

  • Immuno-therapy Study of Temozolomide Plus Radiation Therapy With Nivolumab or Placebo, for Newly Diagnosed Patients With Glioblastoma (GBM, a Malignant Brain Cancer)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate patients with glioblastoma that is MGMT-methylated (the MGMT gene is altered by a chemical change). Patients will receive temozolomide plus radiation therapy. They will be compared to patients receiving nivolumab in addition to temozolomide plus radiation therapy.

    at UCLA UCSF

  • Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

    Sorry, in progress, not accepting new patients

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.

    at UC Irvine UCSD UCSF

  • Behavioral Health Evaluation and Intervention Program for Patients Undergoing Craniotomy

    Sorry, not yet accepting patients

    This is a single center non-randomized, single-arm feasibility trial of the implementation of virtual behavioral health counseling sessions alongside standard-of-care treatment.

    at UCSF

  • Cisplatin With or Without Veliparib in Treating Patients With Recurrent or Metastatic Triple-Negative and/or BRCA Mutation-Associated Breast Cancer With or Without Brain Metastases

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well cisplatin works with or without veliparib in treating patients with triple-negative breast cancer and/or BRCA mutation-associated breast cancer that has come back (recurrent) or has or has not spread to the brain (brain metastases). Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. It is not yet known if cisplatin is more effective with or without veliparib in treating patients with triple-negative and/or BRCA mutation-associated breast cancer.

    at UC Davis

  • Fluoroethyltyrosine for Evaluation of Intracranial Neoplasms

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well F-18 fluoroethyltyrosine (fluoroethyltyrosine) works in detecting tumors in participants with intracranial tumors that have come back. FET accumulates in malignant cells within intracranial neoplasms and can be used to detect recurrent disease and characterize the grade of glial neoplasms. Imaging agents such as FET can help oncologist to see the tumor better during a positron emission tomography (PET) scan.

    at UCSF

  • HKI-272 for HER2-Positive Breast Cancer and Brain Metastases

    Sorry, in progress, not accepting new patients

    The purpose of this research study is to determine how well neratinib works in treating breast cancer that has spread to the brain. Neratinib is a recently discovered oral drug that may stop breast cancer cells from growing abnormally by inhibiting (or blocking) members of a family of proteins that include Human Epidermal Growth Factor Receptor 2 (HER2). In this research study, the investigators are looking to see how well neratinib works to decrease the size of or stabilize breast cancer that has spread to the brain. The investigators are also looking at how previous treatments have affected your thinking (or cognition) and how much neratinib reaches the central nervous system.

    at UCSF

  • Intra-Tumoral Injections of Natural Killer Cells for Recurrent Malignant Brain Tumors

    Sorry, not yet accepting patients

    This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.

    at UCSF

  • Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Magrolimab in Children and Adults With Recurrent or Progressive Malignant Brain Tumors

    Sorry, currently not accepting new patients, but might later

    Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.

    at UCSF

  • Osimertinib With or Without Bevacizumab in Treating Patients With EGFR Positive Non-small Cell Lung Cancer and Brain Metastases

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well osimertinib with or without bevacizumab works in treating patients with EGFR positive non-small cell lung cancer that has spread to the brain (brain metastases). Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Bevacizumab may stop or slow non-small cell lung cancer by blocking the growth of new blood vessels necessary for tumor growth. Giving osimertinib with or without bevacizumab may work better in treating patients with non-small cell lung cancer.

    at UC Davis

  • Ropidoxuridine and Whole Brain Radiation Therapy in Treating Patients With Brain Metastases

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of ropidoxuridine when given together with whole brain radiation therapy in treating patients with cancer that has spread to the brain (brain metastases). Ropidoxuridine may help whole brain radiation therapy work better by making cancer cells more sensitive to the radiation therapy.

    at UC Davis UCSD

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer

    Sorry, in progress, not accepting new patients

    The primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)

    at UC Irvine UCLA UCSD

  • Substudy 02D: Safety and Efficacy of Pembrolizumab in Combination With Investigational Agents or Pembrolizumab Alone in Participants With Melanoma Brain Metastasis (MK-3475-02D/KEYMAKER-U02)

    Sorry, in progress, not accepting new patients

    Substudy 02D is part of a larger research study that is testing experimental treatments for melanoma, a type of skin cancer. The larger study is the umbrella study. The goal of substudy 02D is to evaluate the safety and efficacy of investigational treatment arms in programmed cell-death 1 (PD-1) naïve or PD-1 exposed participants with melanoma brain metastasis (MBM) and to identify the investigational agent(s) that, when used in combination, are superior to the current treatment options/historical control available. As of amendment 2 (effective 01DEC2022) enrollment into the treatment arm of pembrolizumab and lenvatinib has been discontinued.

    at UCLA

  • Testing the Safety of M6620 (VX-970) When Given With Standard Whole Brain Radiation Therapy for the Treatment of Brain Metastases From Non-small Cell Lung Cancer, Small Cell Lung Cancer, or Neuroendocrine Tumors

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of berzosertib (M6620 [VX-970]) when given together with whole brain radiation therapy in treating patients with non-small cell lung cancer, small cell lung cancer, or neuroendocrine tumors that have spread from the original (primary) tumor to the brain (brain metastases). Berzosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving berzosertib together with radiation therapy may work better compared to standard of care treatment, including brain surgery and radiation therapy, in treating patients with non-small cell lung cancer, small cell lung cancer, or neuroendocrine tumors.

    at UC Davis

  • CUDC-907 in Children and Young Adults With Relapsed or Refractory Solid Tumors, CNS Tumors, or Lymphoma

    Sorry, in progress, not accepting new patients

    This research study is evaluating a novel drug called CUDC-907 as a possible treatment for resistant (refractory) pediatric solid tumors (including neuroblastoma), lymphoma, or brain tumors.

    at UCSF

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    at UCLA UCSF

Our lead scientists for Brain Cancer research studies include .

Last updated: