Non-Hodgkin Lymphoma clinical trials at University of California Health
116 in progress, 50 open to eligible people
Expansion Study of BGB-16673 in Participants With B-Cell Malignancies
open to eligible people ages 18 years and up
Study consists of two main parts to explore BGB-16673 recommended dosing, a Phase 1 monotherapy dose finding comprised of monotherapy dose escalation and monotherapy safety expansion of selected doses, and a Phase 2 (expansion cohorts)
at UCLA UCSD
ATG-101 in Patients With Metastatic/Advanced Solid Tumors and Mature B-cell Non-Hodgkin Lymphomas
open to eligible people ages 18 years and up
This is a First-in-Human Phase I trial of ATG-101 in Patients with Metastatic/Advanced Solid Tumors and Mature B-cell Non-Hodgkin Lymphomas.
at UCSF
Mosunetuzumab or Glofitamab in Combination With CC-220 and/or CC-99282 in Participants With B-Cell Non-Hodgkin Lymphoma
open to eligible people ages 18 years and up
This study will evaluate the safety, efficacy, and pharmacokinetics of mosunetuzumab or glofitamab in combination with CELMoDs (CC-220 and/or CC-99282) in participants with B-cell NHL.
at UCSF
ATG-031 in Advanced Solid Tumors or B-cell Non-Hodgkin Lymphomas
open to eligible people ages 18 years and up
ATG-031 study (alias: PERFORM) is a multicenter, open-label, Phase 1 study of ATG-031 in patients with advanced solid tumors or B-NHL. The study design includes a Dose Escalation Phase and a Dose Expansion Phase, and will enroll patients with advanced solid tumors (i.e., preferred tumor types) or relapsed/refractory (R/R) B-NHLs. The study's primary objective is to evaluate the safety and tolerability of ATG-031 and determine the RP2D(Refered Phase II dose) of ATG-031.
at UCSF
CNTY-101 in Participants With CD19-Positive B-Cell Malignancies
open to eligible people ages 18 years and up
ELiPSE-1 is a Phase 1, multi-center, dose-finding study to evaluate the safety, pharmacokinetics, and preliminary efficacy of CNTY-101 in participants with relapsed or refractory cluster of differentiation (CD)19-positive B-cell malignancies.
at UCSD
Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
open to eligible people ages 1-21
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
at UC Davis UCLA UCSF
NX-1607 in Adults With Advanced Malignancies
open to eligible people ages 18 years and up
This is a first-in-human Phase 1a/1b multicenter, open-label oncology study designed to evaluate the safety and anti-cancer activity of NX-1607 in patients with advanced malignancies.
at UCSF
NX-5948 in Adults With Relapsed/Refractory B-cell Malignancies
open to eligible people ages 18 years and up
This is a first-in-human Phase 1a/1b multicenter, open-label study designed to evaluate the safety and anti-cancer activity of NX-5948 in patients with advanced B-cell malignancies.
at UCSF
How Well Odronextamab Combined With Chemotherapy Works and How Safe it is Against Rituximab Combined With Chemotherapy, in Patients With Previously Untreated Diffuse Large B-cell Lymphoma
open to eligible people ages 18 years and up
This study is researching an experimental drug called odronextamab, referred to as study drug, when used in combination with chemotherapy. The study is focused on patients with diffuse large B-cell lymphoma (DLBCL) that have not been treated before (called "previously untreated"). Patients with DLBCL that have come back after treatment (called "relapsed"), or have not responded to treatment (called "refractory"), can also participate in this study. This study will be made up of Part 1A, Part 1B, and Part 2.The aim of Part 1A and Part 1B of the study is to see how safe and tolerable the study drug in combination with chemotherapy is and to determine the dose and schedule of the study drug to be combined with chemotherapy in Part 2 of the study. The aim of Part 2 of the study is to see how effective the combination of the study drug with chemotherapy is in comparison with the combination of rituximab (the comparator drug), and chemotherapy, the current standard of care treatment approved for DLBCL. Standard of care means the usual medication expected and used when receiving treatment for a condition. The study is looking at several other research questions, including: - What side effects may happen from taking the study drug when combined with chemotherapy - How much study drug is in the blood at different times - Whether the body makes antibodies against the study drug (which could make the study drug less effective or could lead to side effects) - The impact from the study drug on quality of life and ability to complete routine daily activities
at UC Davis UC Irvine UCLA
Adverse Events of Subcutaneous (SC) Epcoritamab Administered in the Outpatient Setting in Adult Participants With Relapsed or Refractory Diffuse Large B-Cell Lymphoma and Classic Follicular Lymphoma
open to eligible people ages 18 years and up
B-cell Lymphoma is an aggressive and rare cancer of a type of immune cells (a white blood cell responsible for fighting infections). Classic Follicular Lymphoma is a slow-growing type of non-Hodgkin lymphoma. The purpose of this study is to assess the safety of epcoritamab in adult participants in relapsed or refractory (R/R) diffuse large b-cell lymphoma (DLBCL) who have received at least 1 prior line of systemic antilymphoma therapy including at least 1 anti-CD20 monoclonal antibody-containing therapy or R/R classic follicular lymphoma (cFL). Adverse events will be assessed. Epcoritamab is an investigational drug being developed for the treatment of R/R DLBCL and R/R cFL. Study doctors will assess participants in a monotherapy treatment arm of epcoritamab. Participants will receive escalating doses of epcoritamab, until full dose is achieved. Approximately 184 adult participants with R/R DLBCL and R/R cFL will be enrolled in the study in approximately 80 sites in the United States of America. Participants will receive escalating doses of subcutaneous epcoritamab, until full dose is achieved, in 28-day cycles. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.
at UCLA UCSF
Change in Disease Activity of Subcutaneous (SC) Epcoritamab Combined With Intravenous and Oral Rituximab, Cyclophosphamide, Doxorubicin Hydrochloride, Vincristine, and Prednisone (R-CHOP) or R-CHOP in Adult Participants With Newly Diagnosed Diffuse Large B-Cell Lymphoma (DLBCL)
open to eligible people ages 18-79
B-cell Lymphoma is an aggressive and rare cancer of a type of immune cells (a white blood cell responsible for fighting infections). The purpose of this study is to assess the change in disease activity of epcoritamab when combined with intravenous and oral rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine, and prednisone (R-CHOP) or R-CHOP in adult participants globally with diffuse large b-cell lymphoma (DLBCL). Change in disease activity will be assessed. Epcoritamab is an investigational drug being developed for the treatment of DLBCL. Study doctors put the participants in groups called treatment arms. Participants will receive epcoritamab combined with R-CHOP, followed by epcoritamab or R-CHOP followed by rituximab will be explored. Approximately 900 adult participants with with newly diagnosed DLBCL will be enrolled in the study in approximately 315 sites in globally. In the Arm 1, participants will receive subcutaneous epcoritamab combined with intravenous and oral R-CHOP followed by subcutaneous epcoritamab in 21-day cycles. In the Arm 2, participants will receive intravenous and oral R-CHOP followed by intravenous rituximab in 21-day cycles. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.
at UCLA
Glofitamab Monotherapy and Glofitamab + Chemoimmunotherapy in Pediatric and Young Adult Participants With Relapsed/Refractory Mature B-Cell Non-Hodgkin Lymphoma
open to eligible people ages 6 months to 30 years
The purpose of this study is to evaluate the safety and efficacy of glofitamab, as monotherapy and in combination with a standard chemoimmunotherapy regimen: rituximab, ifosfamide, carboplatin, and etoposide (R-ICE) in pediatric and young adult participants with relapsed and refractory (R/R) mature B-cell non-Hodgkin lymphoma (B-NHL).
at UCSF
Preliminary Anti-Tumor Activity of Englumafusp Alfa in Combination With Obinutuzumab and in Combination With Glofitamab Following a Pre-Treatment Dose of Obinutuzumab in Participants With Relapsed/Refractory B-Cell Non-Hodgkin's Lymphoma
open to eligible people ages 18 years and up
This is a phase I/II, open-label, dose-escalation study designed to evaluate the safety, tolerability, and efficacy of englumafusp alfa (RO7227166) in participants with relapsed/refractory Non-Hodgkin's Lymphoma (r/r NHL). Englumafusp alfa will be administered by intravenous (IV) infusion in combination with obinutuzumab and in combination with glofitamab. A fixed dose of obinutuzumab (Gpt; pre-treatment) will be administered up to seven days prior to the first administration of englumafusp alfa and seven days prior to the first administration of glofitamab. This entry-into-human study is divided into a dose-escalation stage (Part I and Part II) and a dose expansion stage (Part III).
at UCSF
PK, PD, and Efficacy of ONO-7018 in Patients With R/R NHL or CLL
open to eligible people ages 18 years and up
This is a Phase 1, open-label, multicenter study. This will be the first-in-human clinical study for ONO-7018 and will be conducted in two phases: a Dose Escalation Phase (Part 1) and a Dose Expansion Phase (Part 2).
at UCLA
AB-101 as Monotherapy and With Immunotherapy in Patients With Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma
open to eligible people ages 18 years and up
AB-101 is an off-the shelf, allogeneic cell product made of "natural killer" cells, also called NK cells. White blood cells are part of the immune system and NK cells are a type of white blood cell that are known to kill cancer cells. This clinical trial will enroll patients with relapsed/refractory non-Hodgkin lymphoma of B-cell origin and is conducted in two phases. The primary objectives of Phase 1 are as follows: 1) to evaluate the safety of AB-101 given alone or in combination with rituximab (including the DLBCL specific cohort) or in combination with bendamustine and rituximab; 2) to evaluate the potential clinical activity of AB-101 when given in combination with rituximab or in combination with bendamustine and rituximab (combination cohorts only); and 3) to identify the recommended Phase 2 dose (RP2D). The primary objective of Phase 2 is to determine whether AB-101 in combination with rituximab or in combination with bendamustine and rituximab has anti-cancer activity in patients. Patients will be assigned to receive either AB-101 alone as monotherapy, in combination with rituximab (including DLBCL specific cohort) or in combination with bendamustine and rituximab. All patients will receive at least 1 treatment cycle of AB-101, followed by scheduled assessments of overall health and tumor response. Patients receiving AB-101 in combination with rituximab may receive up to 3 additional cycles of treatment. Patients receiving AB-101 in combination with bendamustine and rituximab may receive up to 5 additional cycles of treatment. Patients enrolled into the DLBCL specific cohort receiving AB-101 in combination with rituximab may receive up to 3 cycles of treatment.
at UC Irvine UCSD
Acalabrutinib Maintenance for the Treatment of Patients With Large B-cell Lymphoma
open to eligible people ages 18-70
This phase Ib/II trial studies the side effects and efficacy of maintenance acalabrutinib following cellular therapy in treating patients with large B-cell lymphoma at very high risk of the cancer coming back. Acalabrutinib is a small molecular inhibitor that may interfere with the ability of cancer cells to grow and spread.
at UC Davis UCLA
Allogeneic NK T-Cells Expressing CD19 Specific CAR in B-Cell Malignancies
open to eligible people ages 3-75
This study is a multi-center study to evaluate the safety of KUR-502 in subjects with refractory/relapsed B-cell NHL or leukemia (ALL or CLL).
at UCSF
Nanatinostat in Combination with Valganciclovir in Patients with Epstein-Barr Virus-Positive (EBV+) Relapsed/Refractory Lymphomas
open to eligible people ages 18 years and up
A Phase 2 study to evaluate the efficacy of nanatinostat in combination with valganciclovir in patients with relapsed/refractory EBV-positive lymphomas
at UC Irvine UCLA UCSF
Anakinra in Preventing Severe Chimeric Antigen Receptor T-Cell Related Encephalopathy Syndrome in Patients with Recurrent or Refractory Large B-cell Lymphoma
open to eligible people ages 18 years and up
This phase II trial studies how well anakinra works in preventing severe chimeric antigen receptor T-cell-related encephalopathy syndrome after chimeric antigen receptor T-cell therapy in patients with large B-cell lymphoma that has come back or has not responded to treatment. Immunosuppressive therapy, such as anakinra, is used to decrease the body?s immune response, which may prevent severe chimeric antigen receptor T-cell-related encephalopathy syndrome.
at UC Davis UCLA
Anti-CD19 Chimeric Antigen Receptor T Cells for Treatment of Relapsed or Refractory Non-Hodgkin Lymphoma
open to eligible people ages 18 years and up
This study will assess safety and feasibility of infusing genetically modified autologous T cells transduced to express a chimeric antigen receptor targeting the B cell surface antigen Cluster of Differentiation 19 (CD19)
at UC Davis UCSF
AS-1763 in Patients With Previously Treated CLL/SLL or Non-Hodgkin Lymphoma
open to eligible people ages 18 years and up
This is an open-label, multi-center Phase 1b clinical study of oral AS-1763 (docirbrutinib) in patients with CLL/SLL or B-cell NHL who have failed or are intolerant to ≥2 lines of systemic therapy.
at UC Irvine
CRISPR-Edited Allogeneic Anti-CD19 CAR-T Cell Therapy for Relapsed/Refractory B Cell Non-Hodgkin Lymphoma (ANTLER)
open to eligible people ages 18 years and up
CB010A is a study evaluating safety, emerging efficacy, pharmacokinetics and immunogenicity of CB-010 in adults with relapsed/refractory B cell non-Hodgkin lymphoma after lymphodepletion consisting of cyclophosphamide and fludarabine.
at UC Irvine UCSD
DALY II USA/ MB-CART2019.1 for DLBCL
open to eligible people ages 18 years and up
DALY II USA is a phase II, multi-center, single arm study to evaluate the efficacy, safety, and pharmacokinetics of zamtocabtagene autoleucel (MB-CART2019.1) in patients with relapsed and/or refractory diffuse large B cell lymphoma (DLBCL) after receiving at least two lines of therapy.
at UCSD
Nemtabrutinib (MK-1026) in Participants With Hematologic Malignancies (MK-1026-003)
open to eligible people ages 18 years and up
The purpose of this study is to evaluate the safety and efficacy of nemtabrutinib (formerly ARQ 531) in participants with hematologic malignancies of chronic lymphocytic leukemia (CLL)/ small lymphocytic lymphoma (SLL), Richter's transformation, marginal zone lymphoma (MZL), mantle cell lymphoma (MCL), follicular lymphoma (FL), and Waldenström's macroglobulinemia (WM).
at UCLA UCSD
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)
open to eligible people ages 12 months to 21 years
This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Ibrutinib, Rituximab, Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride in Treating Patients With HIV-Positive Stage II-IV Diffuse Large B-Cell Lymphomas
open to eligible people ages 18 years and up
This phase I trial studies the side effect and best dose of ibrutinib in combination with rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride in treating patients with human immunodeficiency virus (HIV)-positive stage II-IV diffuse large B-cell lymphomas. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ibrutinib and etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride may work better in treating patients with HIV-positive diffuse large B-cell lymphomas.
at UCLA UCSD UCSF
Loncastuximab Tesirine and Rituximab Followed by DA-EPOCH-R for Treating Patients With High-Risk Diffuse Large B-cell Lymphoma
open to eligible people ages 18 years and up
This phase II trial evaluates whether loncastuximab tesirine and rituximab followed by dose-adjusted doxorubicin, etoposide, vincristine, cyclophosphamide, and prednisone works to treat patients with high risk diffuse large B-cell lymphoma. Loncastuximab tesirine is a monoclonal antibody called loncastuximab, linked to a drug called tesirine. It is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs such as doxorubicin, vincristine, and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Giving loncastuximab tesirine and rituximab in combination with dose-adjusted doxorubicin, etoposide, vincristine, cyclophosphamide, and prednisone may be more effective at treating high risk diffuse large B-cell lymphoma patients than standard treatments.
at UC Davis
Modified Immune Cells (CD19/CD20 CAR-T Cells) in Treating Patients with Recurrent or Refractory B-Cell Lymphoma or Chronic Lymphocytic Leukemia
open to eligible people ages 18-70
This phase I trial studies the side effects and best dose of CD19/CD20 chimeric antigen receptor (CAR) T-cells when given together with chemotherapy, and to see how effective they are in treating patients with non-Hodgkin's B-cell lymphoma or chronic lymphocytic leukemia that has come back (recurrent) or has not responded to treatment (refractory). In CAR-T cell therapy, a patient's white blood cells (T cells) are changed in the laboratory to produce an engineered receptor that allows the T cell to recognize and respond to CD19 and CD20 proteins. CD19 and CD20 are commonly found on non-Hodgkin?s B-cell lymphoma and chronic lymphocytic leukemia cells. Chemotherapy drugs such as fludarabine phosphate and cyclophosphamide can control cancer cells by killing them, by preventing their growth, or by stopping them from spreading. Combining CD19/CD20 CAR-T cells and chemotherapy may help treat patients with recurrent or refractory B-cell lymphoma or chronic lymphocytic leukemia.
at UCLA
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
open to eligible people ages 18 years and up
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
at UCSD
PET Imaging Study of 64Cu-GRIP B for Patients Receiving CD19-directed CAR-T Therapy
open to eligible people ages 18 years and up
This is a phase I/Ib imaging study of granzyme B, 64-copper granzyme targeting restricted interaction peptide specific to family member B (64Cu-GRIP B) Positron Emission Tomography (PET) in patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) receiving CD19-directed Chimeric antigen receptor T cells (CAR-T) therapy. The proposed study represents the first-ever lymphoma patient imaging studies with 64Cu-GRIP B PET. The tracer is designed to detect extracellular granzyme B as it is secreted by activated immune cells in the tumor microenvironment, which may highlight tumors that will exhibit a durable response to Cluster of Differentiation 19 (CD19)-directed CAR T-cell therapy.
at UCSF
Rapcabtagene Autoleucel in CLL, 3L+ DLBCL, r/r ALL and 1L HR LBCL
open to eligible people ages 18-100
This is a phase I/II study to evaluate the feasibility, safety and preliminary antitumor efficacy of rapcabtagene autoleucel (also known as YTB323). Rapcabtagene autoleucel will be investigated in combination with ibrutinib in chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) and as single agent in diffuse large B-cell lymphoma (3L+ DLBCL), adult acute lymphoblastic leukemia (ALL) and 1st Line High Risk Large B-Cell Lymphoma (1L HR LBCL).
at UCLA
BMF-219, a Covalent Menin Inhibitor, in Adult Patients With AML, ALL (With KMT2A/ MLL1r, NPM1 Mutations), DLBCL, MM, and CLL/SLL
open to eligible people ages 18 years and up
A Phase 1 first-in-human dose-escalation and dose-expansion study of BMF-219, an oral covalent menin inhibitor, in adult patients with AML, ALL (with KMT2A/ MLL1r, NPM1 mutations), DLBCL, MM, and CLL/SLL.
at UC Davis UC Irvine UCLA
CTO1681 for the Prevention and Treatment of CRS in DLBCL Patients Receiving CAR T-Cell Therapy
open to eligible people ages 18 years and up
This is an interventional study to evaluate the use of CTO1681 in preventing or reducing CAR T-cell-induced toxicities like cytokine release syndrome (CRS). This study will enroll adult patients with DLBCL who are scheduled to receive CD19-directed CAR T-cell therapy. The first phase of the study will be open label with dose escalation. Participants will start taking CTO1681 just prior to receiving their CAR T-cell therapy and continue to take the study drug three times daily for a total of 15 days.
at UC Irvine
IMPT-314 in R/R Aggressive B-cell NHL
open to eligible people ages 18 years and up
This is a Phase 1/2, multi-center, open-label study evaluating the safety and efficacy of IMPT-314, a bispecific chimeric antigen receptor (CAR) targeting cluster of differentiation (CD)19 and CD20 in participants with aggressive B-cell NHL. Three cohorts of participants will be enrolled: 1) CAR T naïve after at least two or more prior lines of treatment, 2) CAR T experienced and 3) refractory disease or relapse within one year of first line therapy. Up to approximately 90 patients (30 per cohort) will be enrolled in dose finding Phase 1 part of the study, which will determine the recommended phase 2 dose. Phase 2 will enroll up to approximately 60 additional participants (20 per cohort) to evaluate further the safety and efficacy of IMPT-314. IMPT-314 treatment consists of a single infusion of CAR-transduced autologous T cells administered intravenously after a conditioning chemotherapy regimen consisting of fludarabine and cyclophosphamide, administered over 3 days. Individual participants will remain in the active post-treatment period for approximately 2 years. Participants will continue in long-term follow-up for 15 years from treatment.
at UC Irvine UCLA
Oral MRT-2359 in Selected Cancer Patients
open to eligible people ages 18 years and up
This Phase 1/2, open-label, multicenter study is conducted in patients with previously treated selected solid tumors, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), high-grade neuroendocrine cancer of any primary site, diffuse large B-cell lymphoma (DLBCL), and tumors with L-MYC or N-MYC amplification. Patients receive escalating doses of a GSPT1 molecular glue degrader MRT-2359 to determine safety, tolerability, maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of MRT-2359. Once the MTD and/or RP2D is identified, additional patients enroll to Phase 2 study, which includes molecular biomarkers stratification or selection, namely expression or amplification of L-MYC and N-MYC genes, hormone receptor positive (HR)-positive, human epidermal growth factor 2 (HER2)-negative breast cancer and prostate cancer.
at UCSD
Adverse Events and Change in Disease Activity in Adult Participants With B-Cell Malignancies Receiving Oral ABBV-525 Tablets
open to eligible people ages 18 years and up
B-cell malignancies are a group of cancers of B lymphocytes, a type of white blood cell responsible for fighting infections. The purpose of this study is to assess safety, tolerability, pharmacokinetics and preliminary efficacy of ABBV-525 as a monotherapy. ABBV-525 is an investigational drug being developed for the treatment of B-Cell Malignancies. Study doctors put the participants in groups called treatment arms. Participants will receive ABBV-525 at different doses. Approximately 100 adult participants will be enrolled in the study across sites worldwide. In part 1 (dose escalation), participants will receive escalating oral doses of ABBV-525. In part 2 (dose optimization), participants will receive one of two oral doses of ABBV-525, until the recommended phase 2 dose (RP2D) is determined. In part 3 (dose expansion), participants will receive the RP2D oral dose of ABBV-525. The estimated duration of the study is up to 64 months. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic and may require frequent medical assessments, blood tests, and scans.
at UCLA
Combination of Favezelimab (MK-4280) and Pembrolizumab (MK-3475) in Participants With Hematologic Malignancies (MK-4280-003)
open to eligible people ages 18 years and up
This study will evaluate the safety and efficacy of favezelimab (MK-4280) in combination with pembrolizumab (MK-3475) using a non-randomized study design in participants with the following hematological malignancies: - classical Hodgkin lymphoma (cHL) - diffuse large B-cell lymphoma (DLBCL) - indolent non-Hodgkin lymphoma (iNHL) This study will also evaluate the safety and efficacy of pembrolizumab or favezelimab administered as monotherapy in participants with cHL using a 1:1 randomized study design. The study will have 2 phases: a safety lead-in and an efficacy expansion phase. The recommended Phase 2 dose (RP2D) will be determined in the safety lead-in phase by evaluating dose-limiting toxicities. There is no primary hypothesis for this study.
at UCLA UCSF
T-Cell Therapy (EB103) in Adults With Relapsed/Refractory B-Cell Non-Hodgkin's Lymphoma (NHL)
open to eligible people ages 18 years and up
This is an open-label, dose escalation, multi-center, Phase I/II clinical trial to assess the safety of an autologous T-cell therapy (EB103) and to determine the Recommended Phase II Dose (RP2D) in adult subjects (≥ 18 years of age) who have relapsed/refractory (R/R) B-cell NHL. The study will include a dose escalation phase followed by an expansion phase.
at UC Davis
Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)
open to eligible people ages 12 months to 21 years
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
at UC Davis UCLA UCSF
Tegavivint for the Treatment of Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid Tumors
open to eligible people ages 12 months to 30 years
This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.
at UCSF
Testing CC-486 (Oral Azacitidine) Plus the Standard Drug Therapy in Patients 75 Years or Older With Newly Diagnosed Diffuse Large B Cell Lymphoma
open to eligible people ages 75 years and up
This phase II/III trial compares the side effects and activity of oral azacitidine in combination with the standard drug therapy (reduced dose rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone [R-miniCHOP]) versus R-miniCHOP alone in treating patients 75 years or older with newly diagnosed diffuse large B cell lymphoma. R-miniCHOP includes a monoclonal antibody (a type of protein), called rituximab, which attaches to the lymphoma cells and may help the immune system kill these cells. R-miniCHOP also includes prednisone which is an anti-inflammatory medication and a combination of 3 chemotherapy drugs, cyclophosphamide, doxorubicin, and vincristine. These 3 chemotherapy drugs, as well as oral azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combining oral azacitidine with R-miniCHOP may shrink the cancer or extend the time without disease symptoms coming back or extend patient's survival when compared to R-miniCHOP alone.
at UC Irvine UCSF
Fludarabine and Cyclophosphamide With or Without Rituximab Before CD19 Chimeric Antigen Receptor T Cells for the Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma
“Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”
open to eligible people ages 18 years and up
This phase I trial evaluates the best dose, possible benefits and/or side effects of fludarabine and cyclophosphamide with or without rituximab before CD19 chimeric antigen receptor T cells in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or has not responded to previous treatment (refractory). T-cells are a normal part of the immune system. To make the T-cell medication, T-cells are taken from the blood and altered in a laboratory. They are then returned to the body. The altered T-cells will latch on to a specific part of the cancer cells and hopefully kill them. Once the T-cells have been altered in the laboratory, they are called "CAR T-cells." CAR is short for "chimeric antigen receptors." These are structures on the surface of cells that allow the altered T-Cells to find and destroy the cancer cells. Another part of the T-Cell medication is called "CD19." This part is called a "biomarker." Biomarkers help doctors determine whether a cancer is getting worse and whether medications are working to stop it. The chemotherapy drugs that are given before the T-Cell therapy are cyclophosphamide, fludarabine and rituximab. Rituximab is an immunotherapy drug. These chemotherapy drugs will reduce the number of normal (unaltered) T-Cells in the body to make room for the altered T-cells to kill the cancer cells. Giving fludarabine and cyclophosphamide with or without rituximab before CD19 CAR T cell therapy may help improve response to CD19 CAR T cell therapy in patients with diffuse large B-cell lymphoma.
at UC Davis
Testing Drug Treatments After CAR T-cell Therapy in Patients With Relapsed/Refractory Diffuse Large B-cell Lymphoma
open to eligible people ages 18 years and up
This phase II trial tests whether mosunetuzumab and/or polatuzumab vedotin helps benefit patients who have received chemotherapy (fludarabine and cyclophosphamide) followed by chimeric antigen receptor (CAR) T-cell therapy (tisagenlecleucel, axicabtagene ciloleucel, or lisocabtagene maraleucel) for diffuse large B-cell lymphoma that has come back (recurrent) or that does not respond to treatment (refractory) or grade IIIb follicular lymphoma. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Polatuzumab vedotin is a monoclonal antibody, called polatuzumab, linked to a drug called vedotin. Polatuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, and delivers vedotin to kill them. Chemotherapy drugs, such as fludarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving mosunetuzumab and/or polatuzumab vedotin after chemotherapy and CAR T-cell therapy may be more effective at controlling or shrinking the cancer than not giving them.
at UC Irvine UCSF
Duvelisib or CC-486 to the Usual Treatment for Peripheral T-Cell Lymphoma
open to eligible people ages 18 years and up
This phase II trial studies the effect of duvelisib or CC-486 and usual chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone in treating patients with peripheral T-cell lymphoma. Duvelisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as CC-486, cyclophosphamide, doxorubicin, vincristine, etoposide and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help find out if this approach is better or worse than the usual approach for treating peripheral T-cell lymphoma.
at UCSD
Testing the Combination of Anti-cancer Drugs Mosunetuzumab, Polatuzumab Vedotin, and Lenalidomide for the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma
open to eligible people ages 18 years and up
This phase I trial studies the side effects and best dose of mosunetuzumab when given together with polatuzumab vedotin and lenalidomide in treating patients with diffuse large B-cell lymphoma (DLBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Mosunetuzumab and polatuzumab vedotin are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Polatuzumab, linked to a toxic agent called vedotin, attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Lenalidomide may stimulate or suppress the immune system in different ways and stop cancer cells from growing and by preventing the growth of new blood vessels that cancer cells need to grow. Giving mosunetuzumab with polatuzumab vedotin and lenalidomide may work better in treating patients with relapsed/refractory DLBCL.
at UC Davis
Testing the Combination of Nivolumab and ASTX727 for Relapsed or Refractory B-Cell Lymphoma
open to eligible people ages 18 years and up
This phase I trial tests the safety, side effects, and best dose of nivolumab in combination with ASTX727 in treating B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. ASTX727 consists of the combination of decitabine and cedazuridine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Giving nivolumab in combination with ASTX727 may shrink and stabilize cancer.
at UC Davis
Testing the Safety of the Anti-cancer Drugs Tazemetostat and Belinostat in Patients With Lymphomas That Have Resisted Treatment
open to eligible people ages 18 years and up
This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphomas that have returned (relapsed) or resisted treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.
at UC Davis
Venetoclax Basket Trial for High Risk Hematologic Malignancies
open to eligible people ages 1-40
This trial is evaluating the safety and tolerability of venetoclax with chemotherapy in pediatric and young adult patients with hematologic malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia derived from myelodysplastic syndrome (MDS/AML), and acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). The names of the study drugs involved in this study are below. Please note this is a list for the study as a whole, participants will receive drugs according to disease cohort. - Venetoclax - Azacitidine - Cytarabine - Methotrexate - Hydrocortisone - Leucovorin - Dexamethasone - Vincristine - Doxorubicin - Dexrazoxane - Calaspargase pegol - Hydrocortisone
at UCSF
Access and Distribution Protocol for Unlicensed Cryopreserved Cord Blood Units (CBUs)
“Assessing new blood cells growth after transplant using cord blood units that do not meet FDA guidelines but meet NMDP guidelines”
open to all eligible people
This study is an access and distribution protocol for unlicensed cryopreserved cord blood units (CBUs) in pediatric and adult patients with hematologic malignancies and other indications.
at UCLA UCSD UCSF
realMIND: Observational Study on Safety and Effectiveness of Tafasitamab in Combination With Lenalidomide in Patients With Relapsed or Refractory DLBCL
open to eligible people ages 18 years and up
The realMIND study is a multicenter, observational study intended to further characterize the safety and effectiveness data of US patients (with a focus on racial and ethnic minority patients) with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), treated with tafasitamab in combination with lenalidomide.
at UC Irvine
9-ING-41 in Patients with Advanced Cancers
Sorry, in progress, not accepting new patients
GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.
at UC Irvine UCSF
CYT-0851 in B-Cell Malignancies and Advanced Solid Tumors
Sorry, in progress, not accepting new patients
This clinical trial is an interventional, active-treatment, open-label, multi-center, Phase 1/2 study. The study objectives are to assess the safety, tolerability and pharmacokinetics (PK) of CYT-0851 in patients with relapsed/refractory B-cell malignancies and advanced solid tumors and to identify a recommended Phase 2 dose as a monotherapy and in combination with chemotherapy for evaluation in these patients.
at UCSF
Axicabtagene Ciloleucel in Subjects With Relapsed/Refractory Indolent Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
This study will enroll approximately 160 adult participants who have relapsed or refractory (r/r) iNHL to be infused with the study treatment, axicabtagene ciloleucel, to see if their disease responds to this experimental product and if this product is safe. Axicabtagene ciloleucel is made from the participants own white blood cells which are genetically modified and grown to fight cancer. An objective response rate of 70% is targeted.
at UCLA
CTX110 in Subjects With Relapsed or Refractory B-Cell Malignancies (CARBON)
Sorry, in progress, not accepting new patients
This is an open-label, multicenter, Phase 1/2 study evaluating the safety and efficacy of CTX110 in subjects with relapsed or refractory B-cell malignancies.
at UCSF
BTCT4465A (Mosunetuzumab) as a Single Agent and Combined With Atezolizumab in Non-Hodgkin's Lymphoma (NHL) and Chronic Lymphocytic Leukemia (CLL)
Sorry, in progress, not accepting new patients
This is a Phase 1/2 dose-escalation study of BTCT4465A (Mosunetuzumab) administered as a single agent and in combination with atezolizumab in participants with relapsed or refractory B-cell NHL and CLL. The study will consist of a dose-escalation stage and an expansion stage where participants will be enrolled into indication-specific cohorts.
at UCSD
Brentuximab Vedotin Plus Lenalidomide and Rituximab for the Treatment of Relapsed/Refractory DLBCL
Sorry, in progress, not accepting new patients
Participants in this study will have diffuse large B-cell lymphoma (DLBCL) that has come back or not gotten better with treatment. The trial will study whether brentuximab vedotin plus two drugs works better to treat this type of cancer than the two drugs alone. Participants will be randomly assigned to get either brentuximab vedotin or placebo. The placebo will look like brentuximab vedotin, but has no medicine in it. Since the study is "blinded," participants and their doctors will not know whether a participant gets brentuximab vedotin or placebo. All participants in the study will get rituximab and lenalidomide. These are drugs that can be used to treat DLBCL.
at UC Davis UCLA
Comparing the Efficacy and Safety of Polatuzumab Vedotin With Rituximab-Cyclophosphamide, Doxorubicin, and Prednisone (R-CHP) Versus Rituximab-Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (R-CHOP) in Participants With Diffuse Large B-Cell Lymphoma
Sorry, in progress, not accepting new patients
This Phase III, randomized, double-blind, placebo-controlled study will compare the efficacy, safety, and pharmacokinetics of polatuzumab vedotin plus R-CHP versus R-CHOP in participants with previously untreated diffuse large B-cell lymphoma (DLBCL).
at UCLA
Glofitamab in Combination With Rituximab Plus Ifosfamide, Carboplatin Etoposide Phosphate in Participants With Relapsed/Refractory Transplant or CAR-T Therapy Eligible Diffuse B-Cell Lymphoma
Sorry, in progress, not accepting new patients
The purpose of this study is to evaluate the preliminary efficacy, safety, and pharmacokinetics of glofitamab (glofit) in combination with rituximab plus ifosfamide, carboplatin, and etoposide (R-ICE) in participants with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), who have failed one prior line of therapy incorporating an anti-cluster of differentiation (CD) 20 antibody (i.e., rituximab) and an anthracycline, and who are transplant or chimeric antigen receptor T-cell (CAR-T) therapy eligible, defined as being medically eligible for intensive platinum-based salvage therapy followed by autologous stem cell transplantation (ASCT) or for CAR-T therapy.
at UC Irvine
CG-806 in Patients With Relapsed or Refractory CLL/SLL or Non-Hodgkin's Lymphomas
Sorry, in progress, not accepting new patients
This study is being done to evaluate the safety, tolerability and effectiveness of Oral CG-806 for the treatment of patients with chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or Non-Hodgkin's Lymphomas who have failed or are intolerant to two or more lines of established therapy or for whom no other treatment options are available.
at UCLA UCSD
CC-486, Lenalidomide, and Obinutuzumab for the Treatment of Recurrent or Refractory CD20 Positive B-cell Lymphoma
Sorry, in progress, not accepting new patients
This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.
at UC Davis
KB-0742 in Participants With Relapsed or Refractory Solid Tumors Including Platinum Resistant High Grade Serous Ovarian Cancer (HGSOC)
Sorry, in progress, not accepting new patients
Part 1: Dose Escalation. The primary objective of Part 1 of this study is to evaluate the safety and tolerability of KB-0742 in participants with relapsed or refractory (R/R) solid tumors or non-Hodgkin lymphoma (NHL). Part 2: Cohort Expansion. The primary objective of Part 2 of this study is to further evaluate the safety and tolerability of KB-0742 in defined participant cohorts including Platinum Resistant High Grade Serous Ovarian Cancer (HGSOC).
at UCLA
Nemtabrutinib (MK-1026) in Participants With Relapsed or Refractory Hematologic Malignancies (ARQ 531-101/MK-1026-001)
Sorry, in progress, not accepting new patients
This study aims to evaluate the safety, tolerability, pharmacodynamic, and pharmacokinetic (PK) of nemtabrutinib (formerly ARQ 531) tablets in selected participants with relapsed or refractory hematologic malignancies. No formal hypothesis testing will be performed for this study.
at UCLA
Oral LOXO-305 in Patients With Previously Treated CLL/SLL or NHL
Sorry, in progress, not accepting new patients
This is an open-label, multi-center Phase 1/2 study of oral LOXO-305 (pirtobrutinib) in patients with CLL/SLL and NHL who have failed or are intolerant to standard of care.
at UCSF
AB308 in Combination With AB122 in Participants With Advanced Malignancies
Sorry, in progress, not accepting new patients
This is a Phase 1/1b, multicenter, open-label, dose-escalation, and dose-expansion study to evaluate the safety, tolerability, pharmacokinetic (PK), pharmacodynamic (PD), and clinical activity of AB308 in combination with zimberelimab (AB122) in participants with advanced malignancies.
at UCLA
JCAR017 in Adult Subjects With Relapsed or Refractory Indolent B-cell Non-Hodgkin Lymphoma (NHL)
Sorry, not currently recruiting here
This is a global Phase 2, open-label, single-arm, multicohort, multicenter study to evaluate efficacy and safety of JCAR017 in adult subjects with r/r FL or MZL. The study will be conducted in compliance with the International Council on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use/Good Clinical Practice (GCP) and applicable regulatory requirements. This study is divided into three periods: - Pretreatment, which consists of screening assessments, leukapheresis and the Pretreatment evaluation; - Treatment, which starts with the administration of lymphodepleting (LD) chemotherapy and continues through JCAR017 administration at Day 1 with follow-up through Day 29; - Posttreatment, which includes follow-up assessments for disease status and safety for 5 years.
at UCLA
Acalabrutinib (ACP-196), a Btk Inhibitor, for Treatment of de Novo Activated B-cell (ABC) Subtype of Diffuse Large B-Cell Lymphoma
Sorry, in progress, not accepting new patients
To characterize the safety profile of acalabrutinib in subjects with relapsed or refractory de Novo Activated B-cell (ABC) Subtype of Diffuse Large B-Cell Lymphoma (DLBCL).
at UCLA
ACP-196 (Acalabrutinib) in Combination With Pembrolizumab, for Treatment of Hematologic Malignancies
Sorry, in progress, not accepting new patients
This study is evaluating the safety, pharmacodynamics (PD), and efficacy of acalabrutinib and pembrolizumab in hematologic malignancies.
at UCLA
Immunotherapy Agent, Atezolizumab, When Given With the Usual Chemo-Immunotherapy Drug Combination (Rituximab Plus Gemcitabine and Oxaliplatin) for Relapsed/Refractory (That Has Come Back or Not Responded to Treatment) Transformed Diffuse Large B-Cell Lymphoma
Sorry, in progress, not accepting new patients
This pilot phase I trial studies the side effects of atezolizumab, gemcitabine, oxaliplatin, and rituximab and to see how well they work in treating patients with transformed diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine and oxaliplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving atezolizumab, gemcitabine, oxaliplatin, and rituximab may work better in treating patients with transformed diffuse large B-cell lymphoma.
at UC Davis UCSD
Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial
Sorry, in progress, not accepting new patients
The purpose of this extension study is to provide venetoclax and obtain long-term safety data for subjects who continue to tolerate and derive benefit from receiving venetoclax in ongoing studies.
at UCLA
Anti-ICOS Monoclonal Antibody MEDI-570 in Treating Patients With Relapsed or Refractory Peripheral T-cell Lymphoma Follicular Variant or Angioimmunoblastic T-cell Lymphoma
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of anti-inducible T-cell co-stimulator (ICOS) monoclonal antibody MEDI-570 in treating patients with peripheral T-cell lymphoma follicular variant or angioimmunoblastic T-cell lymphoma that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as anti-ICOS monoclonal antibody MEDI-570, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.
at UC Davis
Clinical Transplant-Related Long-term Outcomes of Alternative Donor Allogeneic Transplantation (BMT CTN 1702)
Sorry, in progress, not accepting new patients
The purpose of this study is to determine if a search strategy of searching for an HLA-matched unrelated donor for allogeneic transplantation if possible then an alternative donor if an HLA-matched unrelated donor is not available versus proceeding directly to an alternative donor transplant will result in better survival for allogeneic transplant recipients within 2 years after study enrollment.
at UCSD
Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma
Sorry, in progress, not accepting new patients
This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
at UC Davis UCLA UCSF
Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma
Sorry, in progress, not accepting new patients
This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
at UC Davis UCLA UCSF
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Treatment Protocol for Subjects Continuing to Benefit From Ibrutinib.
Sorry, accepting new patients by invitation only
Multicenter, open-label, prospective treatment protocol that provides continued access to ibrutinib to subjects who have completed parent ibrutinib studies, are still benefitting from treatment with ibrutinib, and have no access to commercial ibrutinib for their underlying disease within their region.
at UCLA UCSD
First-in-Human (FIH) Trial in Patients With Relapsed, Progressive or Refractory B-Cell Lymphoma
Sorry, in progress, not accepting new patients
The purpose of this trial is to measure the following in participants with relapsed and/or refractory B-cell lymphoma who receive epcoritamab, an antibody also known as EPKINLY™ and GEN3013 (DuoBody®-CD3xCD20): - The dose schedule for epcoritamab - The side effects seen with epcoritamab - What the body does with epcoritamab once it is administered - What epcoritamab does to the body once it is administered - How well epcoritamab works against relapsed and/or refractory B-cell lymphoma The trial consists of 3 parts: - a dose-escalation part [Phase 1, first-in-human (FIH)] - an expansion part (Phase 2a) - a dose-optimization part (OPT) (Phase 2a) The trial time for each participant depends on which trial part the participant enters: - For the dose-escalation part, each participant will be in the trial for approximately 1 year, which is made up of 21 days of screening, 6 months of treatment (the total time of treatment may be different for each participant), and 6 months of follow-up (the total time of follow-up may be different for each participant). - For the expansion and dose-OPT parts, each participant will be in the trial for approximately 1.5 years, which is made up of 21 days of screening, 1 year of treatment (the total time of treatment may be different for each participant), and 6 months of follow-up (the total time of follow-up may be different for each participant). Participation in the study will require visits to the sites. During the first month, participants must visit every day or every few days, depending on which trial part the participant enters. After that, participants must visit weekly, every other week, once a month, and once every 2 months, as trial participation ends. All participants will receive active drug, and no participants will be given placebo.
at UCSF
Gene Therapy in Treating Patients With Human Immunodeficiency Virus-Related Lymphoma Receiving Stem Cell Transplant
“Study looking at stem cell gene therapy to treat patients with HIV and lymphoma”
Sorry, in progress, not accepting new patients
This phase I/II trial studies the side effects and best dose of gene therapy in treating patients with human immunodeficiency virus (HIV)-related lymphoma that did not respond to therapy or came back after an original response receiving stem cell transplant. In gene therapy, small stretches of deoxyribonucleic acid (DNA) called "anti-HIV genes" are introduced into the stem cells in the laboratory to make the gene therapy product used in this study. The type of anti-HIV genes and therapy in this study may make the patient's immune cells more resistant to HIV-1 and prevent new immune cells from getting infected with HIV-1.
at UC Davis UCSD UCSF
Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
at UC Davis UCLA UCSF
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Lenalidomide and Blinatumomab for the Treatment of Relapsed Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of lenalidomide and blinatumomab when given together in treating patients with non-Hodgkin lymphoma that has returned after a period of improvement (relapsed). Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread.
at UC Davis UCSD
Lenalidomide and Rituximab in Treating Patients With Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
RATIONALE: Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with rituximab may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving lenalidomide together with rituximab works in treating patients with follicular or small lymphocytic non-Hodgkin lymphoma that has relapsed or not responded to treatment.
at UC Davis
Patients Treated With CLBR001 CAR-T
Sorry, accepting new patients by invitation only
This study is designed as a long-term follow-up study of participants who have receive genetically modified autologous CLBR001 CAR-T cells
at UCSD
NKTR-255 vs Placebo Following CD19-directed CAR-T Therapy in Patients With Relapsed/Refractory Large B-cell Lymphoma
Sorry, not currently recruiting here
This study will evaluate the safety and efficacy of NKTR-255 following CD19-directed chimeric antigen (CAR)-T cell therapy in patients with relapsed or refractory (R/R) large B-cell lymphoma (LBCL). NKTR-255 is an investigational IL-15 receptor agonist designed to boost the immune system's natural ability to fight cancer. T cells are infection fighting blood cells that can kill tumor cells. Chimeric antigen (CAR)-T cell product consists of genetically engineered T-cells, modified to recognize CD19, a protein on the surface of cancer cells. These CD19-specific T cells may help the body's immune system identify and kill CD19-positive cancer cells. Giving NKTR-255 following the treatment with CD19 CAR-T cell therapy may work better in treating large B-cell lymphoma than either drug alone.
at UCSD
Palbociclib in Combination With Chemotherapy in Treating Children With Relapsed Acute Lymphoblastic Leukemia (ALL) or Lymphoblastic Lymphoma (LL)
Sorry, in progress, not accepting new patients
AINV18P1 is a Phase 1 study where palbociclib will be administrated in combination with a standard re-induction platform in pediatric relapsed Acute Lymphoblastic Leukemia (ALL) and lymphoblastic lymphoma (LL). LL patients are included because the patient population is rare and these patients are most commonly treated with ALL regimens. The proposed palbociclib starting dose for this study will be 50 mg/m^2/day for 21 days.
at UCSF
Aplitabart (IGM-8444) Alone or in Combination in Participants With Relapsed, Refractory, or Newly Diagnosed Cancers
Sorry, in progress, not accepting new patients
This study is a first-in-human, Phase 1a/1b, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of aplitabart as a single agent and in combination in participants with relapsed and/or refractory solid or hematologic cancers, as well as newly diagnosed cancers, and an open-label, randomized study of aplitabart+FOLFIRI+bevacizumab.
at UC Irvine UCLA UCSF
Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma
Sorry, in progress, not accepting new patients
This partially randomized phase III trial studies the side effects of different combinations of risk-adapted chemotherapy regimens and how well they work in treating younger patients with newly diagnosed standard-risk acute lymphoblastic leukemia or B-lineage lymphoblastic lymphoma that is found only in the tissue or organ where it began (localized). Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy), giving the drugs in different doses, and giving the drugs in different combinations may kill more cancer cells.
at UC Davis UCLA UCSF
Rituximab and Combination Chemotherapy With or Without Lenalidomide in Treating Patients With Newly Diagnosed Stage II-IV Diffuse Large B Cell Lymphoma
Sorry, in progress, not accepting new patients
This randomized phase II trial studies how well rituximab and combination chemotherapy with or without lenalidomide work in treating patients with newly diagnosed stage II-IV diffuse large B cell lymphoma. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. It is not yet known whether rituximab and combination chemotherapy are more effective when given with or without lenalidomide in treating patients with diffuse large B cell lymphoma.
at UC Irvine
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
at UC Davis
S0016 Combination Chemotherapy With Monoclonal Antibody Therapy in Newly Diagnosed Non-Hodgkin's Lymphoma
Sorry, in progress, not accepting new patients
RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies can locate tumor cells and either kill them or deliver radioactive tumor-killing substances to them without harming normal cells. It is not yet known which monoclonal antibody plus combination chemotherapy regimen is more effective in treating non-Hodgkin's lymphoma. PURPOSE: This randomized phase III trial is comparing 2 different monoclonal antibodies given together with combination chemotherapy to see how well they work in treating patients with newly-diagnosed non-Hodgkin's lymphoma.
at UC Davis
Epcoritamab Combinations in Subjects With B-cell Non-Hodgkin Lymphoma (B-NHL)
Sorry, in progress, not accepting new patients
The purpose of this trial is to measure the safety and effectiveness of epcoritamab (EPKINLY™), either by itself or together with other therapies, when treating subjects with B-cell non-Hodgkin Lymphoma (B-NHL). The aim of the first part of the trial is to identify the most appropriate dose of epcoritamab, and the aim of the second part of the trial is to assess the selected epcoritamab dose in a larger group of participants with B-NHL. All participants in this trial will receive either epcoritamab alone, or epcoritamab combined with another standard treatment regimen, with a total of 10 different treatment arms being studied. Trial details include: - The total trial duration will be up to 6 years. - The treatment duration for each participant depends upon which arm of treatment they are assigned to receive, but will be no more than 3 years. - The visit frequency for each participant depends upon which arm of treatment they are assigned to receive, but will be weekly to start for all participants, then will decrease to either: every 2 weeks, or every 3 weeks, or every 4 weeks, or every 8 weeks. - All participants will receive active drug; no one will be given placebo. Participants who receive treatment with epcoritamab will have it injected right under the skin. Participants will receive a different regimen of epcoritamab depending upon which arm of treatment they are assigned. Participants who receive standard treatments will have IV infusions and/or oral administration of those treatments. Participants will receive a different standard treatment regimen depending upon which arm of treatment they are assigned.
at UCLA UCSF
PK, PD, Clinical Activity of KT-333 in Adult Patients with Refractory Lymphoma, Large Granular Lymphocytic Leukemia, Solid Tumors
Sorry, in progress, not accepting new patients
This Phase 1a/1b study will evaluate the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Adult patients with Relapsed or Refractory (R/R) Lymphomas, Large Granular Lymphocytic Leukemia (LGL-L), T-cell prolymphocytic leukemia (T-PLL), and Solid Tumors. The Phase 1a stage of the study will explore escalating doses of single-agent KT-333. The Phase Ib stage will consist of 4 expansion cohorts to further characterize the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Peripheral T-cell Lymphoma (PTCL), Cutaneous T-Cell Lymphoma (CTCL), LGL-L, and solid tumors.
at UC Irvine
Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCLA UCSF
Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
at UC Davis UCLA UCSF
Selumetinib Sulfate in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well selumetinib sulfate works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with MAPK pathway activation mutations that have spread to other places in the body and have come back or do not respond to treatment. Selumetinib sulfate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
at UCLA UCSF
Brexucabtagene Autoleucel (KTE-X19) in Pediatric and Adolescent Participants With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia or Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
The primary objectives of this study are to evaluate the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in pediatric and adolescent participants with relapsed/refractory (r/r) B-precursor acute lymphoblastic leukemia (ALL) or relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (NHL). As of October 2022, no further patients with acute B-cell Acute Lymphoblastic Leukemia (ALL) will be asked to join the study. The study remains open for recruitment for patients that have B-cell Non Hodgkin Lymphoma (NHL).
at UCSF
Capivasertib in Relapsed or Refractory B-cell Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
This study is an open-label, multicenter Phase II study of capivasertib administered orally in participants with Relapsed or Refractory (R/R) B-cell Non-Hodgkin's Lymphoma (NHL).
at UCLA
Axicabtagene Ciloleucel Compared to Standard of Care Therapy in Patients With Relapsed/Refractory Diffuse Large B Cell Lymphoma
Sorry, in progress, not accepting new patients
The goal of this clinical study is to assess whether axicabtagene ciloleucel therapy improves the clinical outcome compared with standard of care second-line therapy in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL).
at UCLA UCSD
Iopofosine I 131 (CLR 131) in Select B-Cell Malignancies (CLOVER-1) and Pivotal Expansion in Waldenstrom Macroglobulinemia
Sorry, in progress, not accepting new patients
Part A of this study evaluates iopofosine I 131 (CLR 131) in patients with select B-cell malignancies (multiple myeloma( MM), indolent chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), lymphoplasmacytic lymphoma (LPL)/Waldenstrom Macroglobulinemia (WM), marginal zone lymphoma (MZL), mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), and central nervous system lymphoma (CNSL) who have been previously treated with standard therapy for their underlying malignancy. Part B (CLOVER-WaM) is a pivotal efficacy study evaluating IV administration of iopofosine I 131 in patients with WM that have received at least two prior lines of therapy.
at UCLA
Oral LOXO-338 in Patients With Advanced Blood Cancers
Sorry, in progress, not accepting new patients
The purpose of this study is to find out whether the study drug, LOXO-338, is safe and effective in patients with advanced blood cancer. Patients must have already received standard therapy. The study may last up to approximately 3 years.
at UCSF
Selinexor in Combination With Backbone Treatments or Novel Therapies In Participants With Relapsed or Refractory (RR) Diffuse Large B-Cell Lymphoma (DLBCL)
Sorry, currently not accepting new patients, but might later
This is a Phase 1/2, multicenter, open-label study to evaluate the efficacy, and safety of various combinations with selinexor in participants with RR DLBCL. The study will be conducted in two phases: Phase 1 and 2. The Phase 1 of the study will be a standard 3 + 3 dose escalation to determine the maximal tolerated dose (MTD), recommended Phase 2 dose (RP2D) for each treatment arm, and assess the dose limiting toxicities (DLTs). The Phase 2 of the study will be a dose expansion study to assess the efficacy and safety of for RP2D selected at the end of Phase 1 of the study for each treatment arm.
at UC Irvine UCSD
CFT7455 in Relapsed/Refractory Non-Hodgkin's Lymphoma or Multiple Myeloma
Sorry, not currently recruiting here
The purpose of this study is to characterize the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of oral cemsidomide (also known as CFT7455) administered at different dosages in subjects with Relapsed/Refractory (r/r) Non-Hodgkin's Lymphoma (NHL) or Multiple Myeloma (MM). Cemsidomide may be administered as a single agent and, in MM only, in combination with oral dexamethasone.
at UCSF
Odronextamab in Patients With CD20+ B-Cell Malignancies
Sorry, in progress, not accepting new patients
This study has two parts with distinct study objectives and study design. In part A, odronextamab is studied as an intravenous (IV) administration with a dose escalation and a dose expansion phase for B-NHL and CLL. The dose escalation phase for B-NHL and the CLL study are closed at the time of protocol amendment 17. In part B, odronextamab is studied as a subcutaneous (SC) administration with a dose finding and a dose expansion phase for B-NHL.
at UC Irvine
Tafasitamab + Lenalidomide + R-CHOP Versus R-CHOP in Newly Diagnosed High-intermediate and High Risk DLBCL Patients
Sorry, in progress, not accepting new patients
This is a phase 3, multicenter, randomized, double-blind, placebo-controlled trial designed to compare the efficacy and safety of the humanized monoclonal anti CD19 antibody tafasitamab plus lenalidomide in addition to R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) versus R-CHOP in previously untreated, high-intermediate and high-risk patients with newly-diagnosed DLBCL
at UCLA
Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers
Sorry, in progress, not accepting new patients
This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.
at UC Davis UC Irvine
Ibrutinib Before and After Stem Cell Transplant in Treating Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma
“Targeted chemotherapy/placebo for relapsed (returned after a period of improvement) or refractory (does not respond to treatment) lymphoma”
Sorry, in progress, not accepting new patients
This randomized phase III trial studies ibrutinib to see how well it works compared to placebo when given before and after stem cell transplant in treating patients with diffuse large B-cell lymphoma that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Before transplant, stem cells are taken from patients and stored. Patients then receive high doses of chemotherapy to kill cancer cells and make room for healthy cells. After treatment, the stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Ibrutinib is a drug that may stop the growth of cancer cells by blocking a protein that is needed for cell growth. It is not yet known whether adding ibrutinib to chemotherapy before and after stem cell transplant may help the transplant work better in patients with relapsed or refractory diffuse large B-cell lymphoma.
at UC Davis UC Irvine UCSD UCSF
Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
at UCLA UCSF
New Anti-cancer Drug, Venetoclax, to Usual Chemotherapy for High Grade B-cell Lymphomas
Sorry, in progress, not accepting new patients
This phase II/III trial tests whether it is possible to decrease the chance of high-grade B-cell lymphomas returning or getting worse by adding a new drug, venetoclax to the usual combination of drugs used for treatment. Venetoclax may stop the growth of cancer cells by blocking a protein called Bcl-2. Drugs used in usual chemotherapy, such as rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with usual chemotherapy may work better than usual chemotherapy alone in treating patients with high-grade B-cell lymphomas, and may increase the chance of cancer going into remission and not returning.
at UC Davis UCSF
Lenalidomide and Nivolumab to the Usual Treatment for Primary CNS Lymphoma
Sorry, not currently recruiting here
This phase I trial tests the safety, side effects, best dose and effectiveness of lenalidomide when added to nivolumab and the usual drugs (rituximab and methotrexate) in patients with primary central nervous system (CNS) lymphoma. Lenalidomide may stop or slow primary CNS lymphoma by blocking the growth of new blood vessels necessary for tumor growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Methotrexate is frequently combined with other chemotherapy agents to improve response. This study may help increase the understanding of lenalidomide and nivolumab use in primary CNS lymphoma treatment. In addition, it may help researchers see whether the control of CNS lymphoma can be extended by using these study drugs as maintenance (prolonged therapy) after control is achieved with the initial chemotherapy regimen (induction).
at UCSF
Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial
Sorry, in progress, not accepting new patients
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
at UC Davis UCLA UCSF
Tisagenlecleucel in Adult Patients With Aggressive B-cell Non-Hodgkin Lymphoma
Sorry, in progress, not accepting new patients
This is a randomized, open label, multicenter phase III trial comparing the efficacy, safety, and tolerability of tisagenlecleucel to Standard Of Care in adult patients with aggressive B-cell Non-Hodgkin Lymphoma after failure of rituximab and anthracycline containing frontline immunochemotherapy.
at UCLA UCSD UCSF
Mosunetuzumab (BTCT4465A) as Consolidation Therapy in Participants With Diffuse Large B-Cell Lymphoma Following First-Line Immunochemotherapy and as Monotherapy or in Combination With Polatuzumab Vedotin in Elderly/Unfit Participants With Previously Untreated Diffuse Large B-Cell Lymphoma
Sorry, in progress, not accepting new patients
This study will evaluate the safety, pharmacokinetics, and preliminary efficacy of mosunetuzumab following first-line diffuse large B-cell lymphoma (DLBCL) immunochemotherapy in participants with a best response of stable disease or partial response, or in elderly/unfit participants with previously untreated DLBCL, or subcutaneous mosunetuzumab in combination with polatuzumab vedotin IV in elderly/unfit participants with previously untreated DLBCL.
at UCLA
Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
at UCLA UCSF
Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)
Sorry, in progress, not accepting new patients
This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UCSF
Registry for People With T-cell Lymphoma
Sorry, not currently recruiting here
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
at UCSD UCSF
CTL019 Out of Specification MAP for ALL or DLBCL Patients
Sorry, not accepting new patients
Managed Access Program (MAP) to provide access to CTL019, for acute lymphoblastic leukemia (ALL) or diffuse large b-cell lymphoma (DLBCL) patients with out of specification leukapheresis product and/or manufactured tisagenlecleucel out of specification for commercial release.
at UCLA UCSD UCSF
Long-Term Follow-up Study
Sorry, accepting new patients by invitation only
This is a non-interventional, long-term safety study of allogeneic CAR-T cell therapy in patients who have participated in a prior Caribou-sponsored clinical study, in a special access program, or in another study such as an IIT. Its purpose of is to collect long-term observational data to identify and understand potential late side effects in patients who have received CAR-T cell therapies.
at UC Irvine UCSD
Our lead scientists for Non-Hodgkin Lymphoma research studies include Ayad Hamdan, M.D. Sarah Larson Dimitrios Tzachanis John Timmerman Stefan Ciurea, MD Michelle Hermiston Christopher Seet Gary Schiller Thomas Martin Mehrdad Abedi Jennifer G. Michlitsch Catherine Coombs, MD Elliot Stieglitz C. Babis Andreadis, MD Herbert Eradat James Chng Marcio H. Malogolowkin Arun A. Rangaswami Naseem Esteghamat, MD MS Aaron Goodman Madhav R. Seshadri Patricia Young Ida C. Wong-Sefidan Elizabeth A. Brem Joseph M Tuscano Sven De Vos Kieuhoa T. Vo.
Last updated: