Skip to main content

Brain Tumor clinical trials at University of California Health

31 in progress, 14 open to eligible people

Showing trials for
  • A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT

    open to eligible people ages 3-30

    This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patient's response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.

    at UCSF

  • A Study of Radiation Therapy With Temozolomide Versus Radiation Therapy With PCV Chemotherapy in Brain Tumors

    open to eligible people ages 18 years and up

    Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving radiation with concomitant and adjuvant temozolomide versus radiation with adjuvant PCV is more effective in treating anaplastic glioma or low grade glioma.

    at UC Davis UC Irvine UCSD

  • A Study to See if Memantine Protects the Brain During Radiation Therapy Treatment for a Brain Tumor

    open to eligible people ages 4-17

    This phase III trial compares memantine to usual treatment in treating patients with brain tumors that are newly diagnosed or has come back (recurrent). Memantine may block receptors (parts of nerve cells) in the brain known to contribute to a decline in cognitive function. Giving memantine may make a difference in cognitive function (attention, memory, or other thought processes) in children and adolescents receiving brain radiation therapy to treat a primary brain tumor.

    at UCSF

  • APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    open to eligible people ages 18 years and up

    The primary Phase 1 purpose of this study was to assess overall safety, tolerability and recommended Phase 2 dose (RP2D) of APL-101. The Phase 2 portion will assess efficacy of the dose determined in Phase 1 in individuals with Non-Small Cell Lung Cancer with c-Met EXON 14 Skip Mutations; individuals with cancers associated with c-Met amplifications; individuals with cancers associated with c-Met fusion

    at UCLA UCSF

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    open to eligible people ages up to 21 years

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    at UCSD UCSF

  • Fimepinostat in Treating Brain Tumors in Children and Young Adults

    open to eligible people ages 3-39

    This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System

    open to all eligible people

    The NeuroBlate® System (NBS) is a minimally invasive robotic laser thermotherapy tool that is being manufactured by Monteris Medical. Since it received FDA clearance in May 2009, the NBS has been used in over 2600 procedures conducted at over 70 leading institutions across United States. This is a prospective, multi-center registry that will include data collection up to 5 years to evaluate safety, QoL, and procedural outcomes including local control failure rate, progression free survival, overall survival, and seizure freedom in up to 1,000 patients and up to 50 sites.

    at UCSD

  • Long-Term Follow-Up of Patients Who Have Participated in Children's Oncology Group Studies

    open to all eligible people

    This clinical trial keeps track of and collects follow-up information from patients who are currently enrolled on or have participated in a Children's Oncology Group study. Developing a way to keep track of patients who have participated in Children's Oncology Group studies may allow doctors learn more about the long-term effects of cancer treatment and help them reduce problems related to treatment and improve patient quality of life.

    at UC Davis UCLA UCSF

  • Magrolimab in Children and Adults With Recurrent or Progressive Malignant Brain Tumors

    open to eligible people ages 3 years and up

    Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.

    at UCSF

  • Phase 1 Study of the Dual MDM2/MDMX Inhibitor ALRN-6924 in Pediatric Cancer

    open to eligible people ages 1-21

    This research study is studying a novel drug called ALRN-6924 as a possible treatment for resistant (refractory) solid tumor, brain tumor, lymphoma or leukemia. The drugs involved in this study are: - ALRN-6924 - Cytarabine (for patients with leukemia only)

    at UCSF

  • Prospective Exploratory Study of FAPi PET/CT With Histopathology Validation in Patients With Various Cancers

    open to eligible people ages 18 years and up

    This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.

    at UCLA

  • Simultaneous Multinuclear Metabolic MRI in Newly Diagnosed or Recurrent Glioma

    open to eligible people ages 18 years and up

    This clinical trial constructs and tests a novel multinuclear metabolic magnetic resonance imaging (MRI) sequence in patients with glioma (brain tumor) that is newly diagnosed or has come back (recurrent). This trial aims to develop new diagnostic imaging technology that may bridge gaps between early detection and diagnosis, prognosis, and treatment in brain cancer.

    at UCLA

  • Trial of CUDC-907 in Children and Young Adults With Relapsed or Refractory Solid Tumors, CNS Tumors, or Lymphoma

    open to eligible people ages 1-21

    This research study is evaluating a novel drug called CUDC-907 as a possible treatment for resistant (refractory) pediatric solid tumors (including neuroblastoma), lymphoma, or brain tumors.

    at UCSF

  • Use of a Tonometer to Identify Epileptogenic Lesions During Pediatric Epilepsy Surgery

    open to all eligible people

    Refractory epilepsy, meaning epilepsy that no longer responds to medication, is a common neurosurgical indication in children. In such cases, surgery is the treatment of choice. Complete resection of affected brain tissue is associated with highest probability of seizure freedom. However, epileptogenic brain tissue is visually identical to normal brain tissue, complicating complete resection. Modern investigative methods are of limited use. An important subjective assessment during surgery is that affected brain tissue feels stiffer, however there is presently no way to determine this without committing to resecting the affected area. It is hypothesized that intra-operative use of a tonometer (Diaton) will identify abnormal brain tissue stiffness in affected brain relative to normal brain. This will help identify stiffer brain regions without having to resect them. The objective is to determine if intra-operative use of a tonometer to measure brain tissue stiffness will offer additional precision in identifying epileptogenic lesions. In participants with refractory epilepsy, various locations on the cerebral cortex will be identified using standard pre-operative investigations like magnetic resonance imagin (MRI) and positron emission tomography (PET). These are areas of presumed normal and abnormal brain where the tonometer will be used during surgery to measure brain tissue stiffness. Brain tissue stiffness measurements will then be compared with results of routine pre-operative and intra-operative tests. Such comparisons will help determine if and to what extent intra-operative brain tissue stiffness measurements correlate with other tests and help identify epileptogenic brain tissue. 24 participants have already undergone intra-operative brain tonometry. Results in these participants are encouraging: abnormally high brain tissue stiffness measurements have consistently been identified and significantly associated with abnormal brain tissue. If the tonometer adequately identifies epileptogenic brain tissue through brain tissue stiffness measurements, it is possible that resection of identified tissue could lead to better post-operative outcomes, lowering seizure recurrences and neurological deficits.

    at UCLA

  • A FIH Study of PF-07284890 in Participants With BRAF V600 Mutant Solid Tumors With and Without Brain Involvement

    Sorry, not currently recruiting here

    First-in-human study to assess safety, tolerability, PK, and preliminary activity of PF-07284890 as a single agent and in combination with binimetinib in participants with BRAF V600-mutated advanced solid tumor malignancies with and without brain involvement.

    at UCSF

  • An Investigational Immuno-therapy Study of Temozolomide Plus Radiation Therapy With Nivolumab or Placebo, for Newly Diagnosed Patients With Glioblastoma (GBM, a Malignant Brain Cancer)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate patients with glioblastoma that is MGMT-methylated (the MGMT gene is altered by a chemical change). Patients will receive temozolomide plus radiation therapy. They will be compared to patients receiving nivolumab in addition to temozolomide plus radiation therapy.

    at UCLA UCSF

  • Anti-LAG-3 Alone & in Combination w/ Nivolumab Treating Patients w/ Recurrent GBM (Anti-CD137 Arm Closed 10/16/18)

    Sorry, in progress, not accepting new patients

    This phase I trial studies the safety and best dose of anti-LAG-3 (anti-LAG-3 monoclonal antibody BMS-986016) or urelumab alone and in combination with nivolumab in treating patients with glioblastoma that has returned (recurrent). Anti-LAG-3 monoclonal antibody BMS-986016, urelumab, and nivolumab are antibodies (a type of protein) that may stimulate the cells in the immune system to attack tumor cells. It is not yet known whether anti-LAG-3 monoclonal antibody BMS-986016 or urelumab alone or in combination with nivolumab may kill more tumor cells. (The Anti-CD137 antibody (BMS-663513 - urelumab) treatment arm closed by BMS on 10/16/18 due to closure of BMS Urelumab development program. Subjects currently on treatment may continue.)

    at UCLA

  • Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

    Sorry, not currently recruiting here

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.

    at UC Irvine UCSD UCSF

  • Dendritic Cell Vaccine for Patients With Brain Tumors

    Sorry, in progress, not accepting new patients

    The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

    at UCLA

  • Functional Organization of the Superior Temporal Gyrus for Speech Perception

    Sorry, accepting new patients by invitation only

    The basic mechanisms underlying comprehension of spoken language are still largely unknown. Over the past decade, the study team has gained new insights to how the human brain extracts the most fundamental linguistic elements (consonants and vowels) from a complex and highly variable acoustic signal. However, the next set of questions await pertaining to the sequencing of those auditory elements and how they are integrated with other features, such as, the amplitude envelope of speech. Further investigation of the cortical representation of speech sounds can likely shed light on these fundamental questions. Previous research has implicated the superior temporal cortex in the processing of speech sounds, but little is known about how these sounds are linked together into the perceptual experience of words and continuous speech. The overall goal is to determine how the brain extracts linguistic elements from a complex acoustic speech signal towards better understanding and remediating human language disorders.

    at UCSF

  • Gliogene: Brain Tumor Linkage Study

    Sorry, in progress, not accepting new patients

    The goal of this research study is to investigate the role of genes that may point to a higher risk of developing a glioma. Researchers will use new gene mapping techniques to study how high-risk factors are passed on through a family's genes and increase the risk of developing gliomas. Objectives: We propose an international multi-center, multidisciplinary study consortium, GLIOGENE, to identify susceptibility genes in high-risk familial brain tumor pedigrees using the most sophisticated genetic analysis methods available. To address our hypothesis, we propose the following specific aims: Aim 1: Establish a cohort of 400 high-risk pedigrees for genetic linkage analysis. To date, we have identified and collected biologic samples from 20 high-risk families that have met our criteria of 2 or more relatives diagnosed with a brain tumor. From the 15 centers in the United States and Europe, we will screen and obtain epidemiologic data from approximately 17,080 gliomas cases to identify a target of 400 families for genetic analysis. We will establish a cohort of the first and second-degree relatives from these glioma cases to obtain new knowledge about how cancer aggregates in glioma families. We will also acquire biospecimens (blood and tumor tissue), and risk factor data from relevant family members. Aim 2: Identify candidate regions linked to familial brain tumors. To strengthen evidence of linkage to regions found in our preliminary analysis and to identify additional regions linked to brain tumors, we will genotype informative glioma pedigrees identified in aim 1 using Affymetrix 10K GeneChip with markers spaced throughout the genome, and conduct a genome-wide multipoint linkage scan with these markers. Aim 3: Fine map the regions established in Aim 2 by genotyping selected SNPs from genome databases. We will attempt to further refine the regions identified in Aim 2 to less than 1cM by using approximately 1,500 - 2,000 carefully selected SNPs. The prioritization of regions will be based on a combination of the strength of evidence for linkage from families of various ethnic backgrounds and the presence of obvious candidate genes.

    at UCSF

  • Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • LUMINOS-101: Lerapolturev (PVSRIPO) and Pembrolizumab in Patients With Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This Phase 2 single arm trial in patients with rGBM will characterize the efficacy, safety, tolerability and initial efficacy of lerapolturev intratumoral infusion followed by intravenous pembrolizumab 14 to 28 days later, and every 3 weeks, thereafter.

    at UCSF

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Study of a Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer

    Sorry, in progress, not accepting new patients

    The primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)

    at UC Irvine UCLA UCSD

  • Study of Binimetinib With Encorafenib in Adults With Recurrent BRAF V600-Mutated HGG

    Sorry, in progress, not accepting new patients

    The goal of this study is to estimate the efficacy of encorafenib and binimetinib as measured by radiographic response in recurrent high-grade primary brain tumors.

    at UCLA

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy in Glioblastoma (Brain Tumor)

    Sorry, currently not accepting new patients, but might later

    This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.

    at UC Davis UC Irvine UCSD

  • The Neural Coding of Speech Across Human Languages

    Sorry, accepting new patients by invitation only

    The overall goal of this study is to reveal the fundamental neural mechanisms that underlie comprehension across human spoken languages. An understanding of how speech is coded in the brain has significant implications for the development of new diagnostic and rehabilitative strategies for language disorders (e.g. aphasia, dyslexia, autism, et alia). The basic mechanisms underlying comprehension of spoken language are unknown. Researchers are only beginning to understand how the human brain extracts the most fundamental linguistic elements (consonants and vowels) from a complex and highly variable acoustic signal. Traditional theories have posited a 'universal' phonetic inventory shared by all humans, but this has been challenged by other newer theories that each language has its own unique and specialized code. An investigation of the cortical representation of speech sounds across languages can likely shed light on this fundamental question. Previous research has implicated the superior temporal cortex in the processing of speech sounds. Most of this work has been entirely carried out in English. The recording of neural activity directly from the cortical surface from individuals with different language experience is a promising approach since it can provide both high spatial and temporal resolution. This study will examine the mechanisms of phonetic encoding, by utilizing neurophysiological recordings obtained during neurosurgical procedures. High-density electrode arrays, advanced signal processing, and direct electrocortical stimulation will be utilized to unravel both local and population encoding of speech sounds in the lateral temporal cortex. This study will also examine the neural encoding of speech in patients who are monolingual and bilingual in Mandarin, Spanish, and English, the most common spoken languages worldwide, and feature important contrastive differences of pitch, formant, and temporal envelope. A cross-linguistic approach is critical for a true understanding of language, while also striving to achieve a broader approach of diversity and inclusion in neuroscience of language.

    at UCSF

  • Tumor Treating Fields With Chemoradiation in Newly Diagnosed GBM

    Sorry, in progress, not accepting new patients

    The study is an open-label pilot study in newly diagnosed glioblastoma patients following surgery. Eligible patients will receive treatment with tumor treating fields therapy using the Optune device starting less than 2 weeks prior to start of chemoradiation. Patients will receive radiation and temozolomide at a routine treatment dose and schedule.

    at UCSF

  • Vaccine Therapy With Bevacizumab Versus Bevacizumab Alone in Treating Patients With Recurrent Glioblastoma Multiforme That Can Be Removed by Surgery

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well giving vaccine therapy with or without bevacizumab works in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. Vaccines consisting of heat shock protein-peptide complexes made from a person's own tumor tissue may help the body build an effective immune response to kill tumor cells that may remain after surgery. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them. It is not yet known whether giving vaccine therapy is more effective with or without bevacizumab in treating glioblastoma multiforme.

    at UCSF

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    at UCLA UCSF

Our lead scientists for Brain Tumor research studies include .

Last updated: