Skip to main content

Brain Tumor clinical trials at UC Health

27 in progress, 14 open to eligible people

Showing trials for
  • A Study of Ad-RTS-hIL-12 + Veledimex in Pediatric Subjects With Brain Tumors Including DIPG

    open to eligible people ages up to 21 years

    This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex in the pediatric population.

    at UCSF

  • APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    open to eligible people ages 18 years and up

    The primary Phase 1 purpose of this study is to assess overall safety and tolerability and recommended Phase 2 dose (RP2D) of APL-101. The Phase 2 portion will assess efficacy of the dose determined in Phase 1 in individuals with Non-Small Cell Lung Cancer with c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    at UCSF

  • Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

    open to eligible people ages 18 years and up

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.

    at UC Irvine UCSD UCSF

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    open to eligible people ages up to 21 years

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    at UCSD UCSF

  • Fimepinostat in Treating Brain Tumors in Children and Young Adults

    open to eligible people ages 3-39

    This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System

    open to all eligible people

    The NeuroBlate® System (NBS) is a minimally invasive robotic laser thermotherapy tool that is being manufactured by Monteris Medical. Since it received FDA clearance in May 2009, the NBS has been used in over 2600 procedures conducted at over 70 leading institutions across United States. This is a prospective, multi-center registry that will include data collection up to 5 years to evaluate safety, QoL, and procedural outcomes including local control failure rate, progression free survival, overall survival, and seizure freedom in up to 1,000 patients and up to 50 sites.

    at UCSD

  • Long-Term Follow-Up of Patients Who Have Participated in Children's Oncology Group Studies

    open to all eligible people

    This clinical trial keeps track of and collects follow-up information from patients who are currently enrolled on or have participated in a Children's Oncology Group study. Developing a way to keep track of patients who have participated in Children's Oncology Group studies may allow doctors learn more about the long-term effects of cancer treatment and help them reduce problems related to treatment and improve patient quality of life.

    at UC Davis UCLA UCSF

  • Phase 1 Study of the Dual MDM2/MDMX Inhibitor ALRN-6924 in Pediatric Cancer

    open to eligible people ages 1-21

    This research study is studying a novel drug called ALRN-6924 as a possible treatment for resistant (refractory) solid tumor, brain tumor, lymphoma or leukemia. The drugs involved in this study are: - ALRN-6924 - Cytarabine (for patients with leukemia only)

    at UCSF

  • Prospective Exploratory Study of FAPi PET/CT With Histopathology Validation in Patients With Various Cancers

    open to eligible people ages 18 years and up

    This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.

    at UCLA

  • Quantifying Oxygen Utilization of Tumors Using Oxygen-Enhanced Molecular MRI

    open to all eligible people

    This trial looks to study the safety and feasibility of using oxygen-enhanced molecular MRI to understand how cancer cells use oxygen differently than normal cells. Cancer cells tend to utilize (or not utilize) oxygen differently than normal cells. By using the oxygen-enhanced molecular MRI, researchers will be able to create spatial "maps" depicting areas of abnormal oxygen utilization unique to cancer. This type of information may be useful for diagnosing new cancers, understanding various "subtypes" of cancer that might utilize oxygen differently, or this information may be useful for evaluating new drugs that impact cancer metabolism.

    at UCLA

  • Stereotactic Radiation Therapy Before Surgery for the Treatment of Resectable Brain Metastases

    open to eligible people ages 18 years and up

    This trial studies how well stereotactic radiation therapy before surgery works in treating patients with cancer that has spread to the brain (brain metastases) and can be removed by surgery (resectable). Stereotactic radiation therapy is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor, and may cause less damage to normal tissue. Giving stereotactic radiation therapy before surgery may make the return of brain metastases less likely and help patients live longer compared to surgery followed by radiation therapy.

    at UCLA

  • Trial of CUDC-907 in Children and Young Adults With Relapsed or Refractory Solid Tumors, CNS Tumors, or Lymphoma

    open to eligible people ages 1-21

    This research study is evaluating a novel drug called CUDC-907 as a possible treatment for resistant (refractory) pediatric solid tumors (including neuroblastoma), lymphoma, or brain tumors.

    at UCSF

  • Tumor Treating Fields With Chemoradiation in Newly Diagnosed GBM

    open to eligible people ages 22 years and up

    The study is an open-label pilot study in newly diagnosed glioblastoma patients following surgery. Eligible patients will receive treatment with tumor treating fields therapy using the Optune device starting less than 2 weeks prior to start of chemoradiation. Patients will receive radiation and temozolomide at a routine treatment dose and schedule.

    at UCSF

  • Use of a Tonometer to Identify Epileptogenic Lesions During Pediatric Epilepsy Surgery

    open to all eligible people

    Refractory epilepsy, meaning epilepsy that no longer responds to medication, is a common neurosurgical indication in children. In such cases, surgery is the treatment of choice. Complete resection of affected brain tissue is associated with highest probability of seizure freedom. However, epileptogenic brain tissue is visually identical to normal brain tissue, complicating complete resection. Modern investigative methods are of limited use. An important subjective assessment during surgery is that affected brain tissue feels stiffer, however there is presently no way to determine this without committing to resecting the affected area. It is hypothesized that intra-operative use of a tonometer (Diaton) will identify abnormal brain tissue stiffness in affected brain relative to normal brain. This will help identify stiffer brain regions without having to resect them. The objective is to determine if intra-operative use of a tonometer to measure brain tissue stiffness will offer additional precision in identifying epileptogenic lesions. In participants with refractory epilepsy, various locations on the cerebral cortex will be identified using standard pre-operative investigations like magnetic resonance imagin (MRI) and positron emission tomography (PET). These are areas of presumed normal and abnormal brain where the tonometer will be used during surgery to measure brain tissue stiffness. Brain tissue stiffness measurements will then be compared with results of routine pre-operative and intra-operative tests. Such comparisons will help determine if and to what extent intra-operative brain tissue stiffness measurements correlate with other tests and help identify epileptogenic brain tissue. 24 participants have already undergone intra-operative brain tonometry. Results in these participants are encouraging: abnormally high brain tissue stiffness measurements have consistently been identified and significantly associated with abnormal brain tissue. If the tonometer adequately identifies epileptogenic brain tissue through brain tissue stiffness measurements, it is possible that resection of identified tissue could lead to better post-operative outcomes, lowering seizure recurrences and neurological deficits.

    at UCLA

  • A Study of TAS-120 in Patients With Advanced Solid Tumors

    Sorry, in progress, not accepting new patients

    This is an open-label, nonrandomized, Phase 1 dose-escalation, dose-expansion, and Phase 2 study targeting tumors with FGF/FGFR aberrations. The purpose of the study is to evaluate the safety, tolerability, PK, pharmacodynamic, and anti-tumor activity of TAS-120 in patients with advanced solid tumors with and without FGF/FGFR-related abnormalities. The study will be conducted in 3 parts, (1) Dose escalation to determine the MTD and/ or RP2D of TAS-120 in which this part of the study has been completed; (2) Phase 1 expansion to further evaluate the safety and efficacy of RP2D of TAS-120 in patients with tumors harboring specific FGFR aberrations, specifically in patients with cholangiocarcinoma, gliomas , urothelial carcinomas and any other tumors with FGFR fusion or activating mutation or amplification. Up to approximately 185 patients will be enrolled in the phase 1 expansion; and (3) Phase 2 study to confirm ORR of TAS-120 in intra-hepatic CCA patients with tumors harboring FGFR2 gene fusions. Approx. 100 patients will be enrolled in phase 2.

    at UCSF

  • An Investigational Immuno-therapy Study of Temozolomide Plus Radiation Therapy With Nivolumab or Placebo, for Newly Diagnosed Patients With Glioblastoma (GBM, a Malignant Brain Cancer)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate patients with glioblastoma that is MGMT-methylated (the MGMT gene is altered by a chemical change). Patients will receive temozolomide plus radiation therapy. They will be compared to patients receiving nivolumab in addition to temozolomide plus radiation therapy.

    at UCLA UCSF

  • Anti-LAG-3 Alone & in Combination w/ Nivolumab Treating Patients w/ Recurrent GBM (Anti-CD137 Arm Closed 10/16/18)

    Sorry, in progress, not accepting new patients

    This phase I trial studies the safety and best dose of anti-LAG-3 (anti-LAG-3 monoclonal antibody BMS-986016) or urelumab alone and in combination with nivolumab in treating patients with glioblastoma that has returned (recurrent). Anti-LAG-3 monoclonal antibody BMS-986016, urelumab, and nivolumab are antibodies (a type of protein) that may stimulate the cells in the immune system to attack tumor cells. It is not yet known whether anti-LAG-3 monoclonal antibody BMS-986016 or urelumab alone or in combination with nivolumab may kill more tumor cells. (The Anti-CD137 antibody (BMS-663513 - urelumab) treatment arm closed by BMS on 10/16/18 due to closure of BMS Urelumab development program. Subjects currently on treatment may continue.)

    at UCLA

  • Bevacizumab With or Without Trebananib in Treating Patients With Recurrent Brain Tumors

    Sorry, in progress, not accepting new patients

    This partially randomized phase II trial with a safety run-in component studies the side effects and how well bevacizumab given with or without trebananib works in treating patients with brain tumors that have come back (recurrent). Immunotherapy with monoclonal antibodies, such as bevacizumab, may induce changes in the body's immune system and interfere with the ability of tumor cells to grow and spread. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether giving bevacizumab together with trebananib is more effective than bevacizumab alone in treating brain tumors.

    at UC Irvine

  • Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects

    Sorry, in progress, not accepting new patients

    Glioblastoma (GBM) and gliosarcoma (GS) are the most common and aggressive forms of malignant brain tumor in adults and can be resistant to conventional therapies. The purpose of this Phase II study is to evaluate how well a recurrent glioblastoma or gliosarcoma tumor responds to one injection of DNX-2401, a genetically modified oncolytic adenovirus, when delivered directly into the tumor followed by the administration of intravenous pembrolizumab (an immune checkpoint inhibitor) given every 3 weeks for up to 2 years or until disease progression. Funding Source-FDA OOPD

    at UCLA

  • Dendritic Cell Vaccine for Patients With Brain Tumors

    Sorry, in progress, not accepting new patients

    The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

    at UCLA

  • Gliogene: Brain Tumor Linkage Study

    Sorry, in progress, not accepting new patients

    The goal of this research study is to investigate the role of genes that may point to a higher risk of developing a glioma. Researchers will use new gene mapping techniques to study how high-risk factors are passed on through a family's genes and increase the risk of developing gliomas. Objectives: We propose an international multi-center, multidisciplinary study consortium, GLIOGENE, to identify susceptibility genes in high-risk familial brain tumor pedigrees using the most sophisticated genetic analysis methods available. To address our hypothesis, we propose the following specific aims: Aim 1: Establish a cohort of 400 high-risk pedigrees for genetic linkage analysis. To date, we have identified and collected biologic samples from 20 high-risk families that have met our criteria of 2 or more relatives diagnosed with a brain tumor. From the 15 centers in the United States and Europe, we will screen and obtain epidemiologic data from approximately 17,080 gliomas cases to identify a target of 400 families for genetic analysis. We will establish a cohort of the first and second-degree relatives from these glioma cases to obtain new knowledge about how cancer aggregates in glioma families. We will also acquire biospecimens (blood and tumor tissue), and risk factor data from relevant family members. Aim 2: Identify candidate regions linked to familial brain tumors. To strengthen evidence of linkage to regions found in our preliminary analysis and to identify additional regions linked to brain tumors, we will genotype informative glioma pedigrees identified in aim 1 using Affymetrix 10K GeneChip with markers spaced throughout the genome, and conduct a genome-wide multipoint linkage scan with these markers. Aim 3: Fine map the regions established in Aim 2 by genotyping selected SNPs from genome databases. We will attempt to further refine the regions identified in Aim 2 to less than 1cM by using approximately 1,500 - 2,000 carefully selected SNPs. The prioritization of regions will be based on a combination of the strength of evidence for linkage from families of various ethnic backgrounds and the presence of obvious candidate genes.

    at UCSF

  • Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Pilot Study of Safety and Toxicity of Acquiring Hyperpolarized Carbon-13 Imaging in Children With Brain Tumors

    Sorry, in progress, not accepting new patients

    This is a single arm pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The pilot study will look at the safety and toxicity of acquiring hyperpolarized carbon-13 imaging in children with brain tumors.

    at UCSF

  • PVSRIPO and Pembrolizumab in Patients With Recurrent Glioblastoma

    Sorry, not currently recruiting here

    This Phase 2 single arm trial in patients with rGBM will characterize the efficacy, safety, tolerability and initial efficacy of PVSRIPO intratumoral infusion followed by intravenous pembrolizumab 14 to 28 days later, and every 3 weeks, thereafter.

    at UCSF

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Vaccine Therapy With Bevacizumab Versus Bevacizumab Alone in Treating Patients With Recurrent Glioblastoma Multiforme That Can Be Removed by Surgery

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well giving vaccine therapy with or without bevacizumab works in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. Vaccines consisting of heat shock protein-peptide complexes made from a person's own tumor tissue may help the body build an effective immune response to kill tumor cells that may remain after surgery. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them. It is not yet known whether giving vaccine therapy is more effective with or without bevacizumab in treating glioblastoma multiforme.

    at UCSF

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    at UCLA UCSF

Last updated: