Skip to main content

Glioblastoma clinical trials at University of California Health

82 in progress, 33 open to eligible people

Showing trials for
  • A Feasibility Study to Evaluate the Safety of the TheraSphere Glioblastoma (GBM) Device in Patients With Recurrent GBM

    open to eligible people ages 18 years and up

    The FRONTIER Study is a prospective, interventional, single-arm, multi-center, study to assess the safety and technical feasibility of TheraSphere GBM in patients with recurrent GBM.

    at UCSF

  • A Phase 1-2 Study of ST101 in Patients With Advanced Solid Tumors

    open to eligible people ages 18 years and up

    This is an open-label, two-part, phase 1-2 dose-finding study designed to determine the safety, tolerability, PK, PD, and proof-of-concept efficacy of ST101 administered IV in patients with advanced solid tumors. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.

    at UCSF

  • A Study Evaluating the Safety, Pharmacokinetic and Anti-tumor Activity of RO7428731 in Participants With Glioblastoma

    open to eligible people ages 18 years and up

    This is an open-label, multicenter study to assess safety, tolerability, pharmacokinetics (PK), immunogenicity, pharmacodynamics (PD), and preliminary efficacy of RO7428731 administered as a monotherapy in participants with newly diagnosed or recurrent epidermal growth factor receptor variant III (EGFRvIII)-positive glioblastoma (GBM).

    at UCLA

  • A Study of the Drug Selinexor With Radiation Therapy in Patients With Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG)

    open to eligible people ages 12 months to 21 years

    This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of HGG that grows in the pons (a part of the brainstem that controls functions like breathing, swallowing, speaking, and eye movements). This trial has two parts. The only difference in treatment between the two parts is that some subjects treated in Part 1 may receive a different dose of selinexor than the subjects treated in Part 2. In Part 1 (also called the Dose-Finding Phase), investigators want to determine the dose of selinexor that can be given without causing side effects that are too severe. This dose is called the maximum tolerated dose (MTD). In Part 2 (also called the Efficacy Phase), investigators want to find out how effective the MTD of selinexor is against HGG or DIPG. Selinexor blocks a protein called CRM1, which may help keep cancer cells from growing and may kill them. It is a type of small molecule inhibitor called selective inhibitors of nuclear export (SINE). Radiation therapy uses high energy to kill tumor cells and shrink tumors. The combination of selinexor and radiation therapy may be effective in treating patients with newly-diagnosed DIPG and H3 K27M-Mutant HGG.

    at UCSF

  • A Study Testing the Effect of Immunotherapy for People with Recurrent Glioblastoma with Elevated Mutational Burden

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 18 years and up

    This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).

    at UC Davis UCSD

  • A Study to Evaluate ERAS-801 in Patients With Recurrent Glioblastoma (THUNDERBBOLT-1)

    open to eligible people ages 18-99

    - To evaluate the safety and tolerability of escalating doses of ERAS-801 in study participants with recurrent glioblastoma multiforme (GBM). - To determine the Maximum Tolerated Dose (MTD) and/or Recommended Dose (RD) of ERAS-801. - To evaluate the antitumor activity of ERAS-801. - To evaluate the PK profile of ERAS-801.

    at UCLA

  • A Trial of RSC-1255 for Treatment of Patients With Advanced Malignancies

    open to eligible people ages 18 years and up

    RSC-101 is a Phase 1a/1b clinical trial of RSC-1255 in adult study participants with advanced solid tumor malignancies who are intolerant of existing therapies known to provide clinical benefit, have disease that has progressed after standard therapy, or have previously failed other therapies. The study has two phases. The purpose of Phase 1a (Dose Escalation) is to confirm the appropriate treatment dose and Phase 1b (Dose Expansion) is to characterize the safety and efficacy of RSC-1255.

    at UC Davis UCLA

  • A Trial to Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.

    at UCLA UCSD UCSF

  • AB154 Combined With AB122 for Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This is a phase 0/I exploratory study. Patients at first or second recurrence of glioblastoma will be enrolled. The study will be divided into two cohorts: Cohort A (safety cohort) and Cohort B (surgical patient cohort). Cohort A: Eligible patients will be sequentially enrolled to receive intravenous AB154 combined with AB122 (N=6). AB154 will be given at a dose of 10 mg/kg and AB122 will be given at a dose of 240 mg (flat). Cohort B: Expansion surgical cohort. The purpose of cohort B is to provide an additional safety evaluation of AB154 + AB122 as well as tissue and blood for exploratory ancillary studies investigating the effects of AB154 + AB122 in the tumor and tumor microenvironment. A total of 40 patients will be enrolled in this cohort.

    at UCSF

  • APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    open to eligible people ages 18 years and up

    The primary Phase 1 purpose of this study was to assess overall safety, tolerability and recommended Phase 2 dose (RP2D) of APL-101. The Phase 2 portion will assess efficacy of the dose determined in Phase 1 in individuals with Non-Small Cell Lung Cancer with c-Met EXON 14 Skip Mutations; individuals with cancers associated with c-Met amplifications; individuals with cancers associated with c-Met fusion

    at UCLA UCSF

  • BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

    open to eligible people ages 13-25

    This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

    at UCSF

  • Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects With GlioBlastoma Brain Tumors

    open to eligible people ages 18-80

    The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors

    at UCSF

  • Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma

    open to eligible people ages 12 months to 21 years

    This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.

    at UC Davis UCLA UCSF

  • DSC-MRI in Measuring rCBV for Early Response to Bevacizumab in Patients With Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase II trial studies how well dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) works in measuring relative cerebral blood volume (rCBV) for early response to bevacizumab in patients with glioblastoma that has come back. DSC-MRI may help evaluate changes in the blood vessels within the cancer to determine a patient?s response to treatment.

    at UC Irvine

  • FDG PET/CT in Monitoring Very Early Therapy Response in Patients With Glioblastoma

    open to eligible people ages 18-99

    This pilot clinical trial studies fluordeoxyglucose (fludeoxyglucose) F-18 (FDG) positron emission tomography (PET)/computed tomography (CT) in monitoring very early therapy response in patients with glioblastoma. Diagnostic procedures, such as FDG PET/CT, may help measure a patient's response to earlier treatment. Chemotherapy can induce very rapid changes to the tumor's glucose consumption which can be measured with imaging. FDG PET/CT shortly after the start of therapy may help identify very early therapy response in patients with glioblastoma.

    at UCLA

  • Fluoroethyltyrosine in Detecting Tumors in Participants With Recurrent Intracranial Tumors

    open to eligible people ages 3 years and up

    This phase II trial studies how well F-18 fluoroethyltyrosine (fluoroethyltyrosine) works in detecting tumors in participants with intracranial tumors that have come back. Imaging agents, such as fluoroethyltyrosine, may help doctors see the tumor better during a positron emission tomography (PET) scan.

    at UCSF

  • GammaTile and Stupp in Newly Diagnosed GBM

    open to eligible people ages 18 years and up

    In summary, standard of care postoperative chemoradiation for patients with newly diagnosed GBM does not routinely provide durable local control or prolonged overall survival. As discussed above it seems unlikely that patient outcomes will be significantly improved with radiation dose escalation given at the time of the EBRT boost. However, as most failures are local, improving LC could potentially improve the OS of patients. To do this, we propose a shift in the traditional radiation paradigm. This study will assess the feasibility and tolerability of adding GT radiation therapy as an upfront boost at the time of maximum safe resection, along with the backbone of the current standard of care approach, concomitant and adjuvant temozolomide +/- TTF, for patients with newly diagnosed GBM. GT, a novel brain brachytherapy device utilizing Cs-131 embedded in bioresorbable collagen tiles, offers a more sophisticated carrier and a shorter half-life radioisotope, Cs-131. Use of this device allows for radiation initiation at an earlier time point and a more rapid dose delivery and possibly more effective tumor control particularly for rapidly proliferating tumors such as GBM. Two prospective studies have demonstrated the safety and efficacy of re-irradiation with GT in patients with recurrent GBM. The overarching goal of this single-arm, open label phase 4 study is to determine the feasibility and tolerability of treating patients with GammaTile in combination with the Stupp Protocol and how to proceed with testing this treatment in a future, larger, randomized clinical study. The aims of the study are to demonstrate that the use of GammaTile at the time of surgery is well tolerated and does not delay the start of the Stupp protocol. Efficacy outcomes (e.g., LC, OS, PFS) will also be described.

    at UC Davis

  • Hyperpolarized Carbon-13 (13C) Pyruvate Imaging in Patients With Glioblastoma

    open to eligible people ages 18 years and up

    The purpose of this study is to evaluate whether new metabolic imaging will be useful to physicians and patients with glioblastoma for making treatment decisions and seeing how well various types of treatment work. The goal is to improve the way patient care is managed in the future. If you chose to be in this study, you will be receiving novel magnetic resonance (MR) metabolic imaging with standard MR imaging. The research component includes an injection of an investigational agent, called hyperpolarized 13C pyruvate, to obtain dynamic metabolic imaging.

    at UCSF

  • Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    open to eligible people ages 18 years and up

    This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that has spread from where it first started (primary site) to other places in the body (metastatic) and that does not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UC Davis UC Irvine

  • ONC206 for Treatment of Newly Diagnosed, or Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors (PNOC 023)

    open to eligible people ages 2-21

    This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

    at UCSF

  • Pembrolizumab and a Vaccine (ATL-DC) for the Treatment of Surgically Accessible Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects and how well of pembrolizumab and a vaccine therapy (ATL-DC vaccine) work in treating patients with glioblastoma that has come back (recurrent) and can be removed by surgery (surgically accessible). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vaccines, such as ATL-DC vaccine, may help the body build an effective immune response to kill tumor cells. Giving pembrolizumab and ATL-DC vaccine may work better in treating patients with glioblastoma compared to ATL-DC alone.

    at UCLA

  • Pivotal, Randomized, Open-label Study of Optune® (Tumor Treating Fields) Concomitant With RT & TMZ for the Treatment of Newly Diagnosed GBM

    open to eligible people ages 18 years and up

    To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.

    at UC Irvine UCSD UCSF

  • RMC-5552 Monotherapy in Adult Subjects With Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase I/Ib trial tests the side effects, best dose, tolerability, and effectiveness of RMC-5552 in treating patients with glioblastoma that has come back (recurrent). RMC-5552 is a type of medicine called an mechanistic target of rapamycin (mTOR) inhibitor. These types of drugs prevent the formation of a specific group of proteins called mTOR. This protein controls cancer cell growth, and the study doctors believe stopping mTOR from forming may help to kill tumor cells.

    at UCSF

  • Study of DSP-0390 in Patients With Recurrent High-Grade Glioma

    open to eligible people ages 18 years and up

    This is a study of DSP-0390 in patients with recurrent high grade glioma.

    at UCSF

  • Study of NGM707 as Monotherapy and in Combination With Pembrolizumab in Advanced or Metastatic Solid Tumor Malignancies

    open to eligible people ages 18 years and up

    Study of NGM707 as Monotherapy and in Combination with Pembrolizumab in Advanced or Metastatic Solid Tumor Malignancies

    at UCLA

  • Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2 in Subjects With Progressive or Recurrent GBM

    open to eligible people ages 18 years and up

    The primary objectives of this trial are to evaluate the safety, dose-limiting toxicities, maximum tolerated dose (MTD), maximum administered dose (MAD) and recommended Phase 2 dose (RP2D) for future study after a single treatment of SONALA-001 in combination with MRgFUS and to evaluate preliminary efficacy of sonodynamic therapy (SDT) using SONALA-001 and Exablate Type 2.0 device in subjects with progressive or recurrent GBM.

    at UCSF

  • Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

    open to eligible people ages 18 years and up

    The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects with recurrent malignant gliomas (glioblastoma, or GBM).

    at UC Irvine UCLA UCSD

  • Study to Evaluate the Efficacy and Safety of Pemigatinib in Participants With Previously Treated Glioblastoma or Other Primary Central Nervous System Tumors Harboring Activating FGFR1-3 Alterations

    open to eligible people ages 18-99

    This is an open-label, monotherapy study of pemigatinib in participants with recurrent glioblastoma (GBM) or other recurrent gliomas, circumscribed astrocytic gliomas, and glioneuronal and neuronal tumors with an activating FGFR1-3 mutation or fusion/rearrangement. This study consists of 2 cohorts, Cohorts A, and B, and will enroll approximately 82 participants into each cohort. Participants will receive pemigatinib 13.5 mg QD on a 2-week on-therapy and 1-week off-therapy schedule as long as they are receiving benefit and have not met any criteria for study withdrawal.

    at UCSF

  • Surgical Nivolumab And Ipilimumab For Recurrent GBM

    open to eligible people ages 18 years and up

    This research trial is studying the safety and effectiveness of nivolumab in combination with ipilimumab and surgery when used in the treatment of recurrent glioblastoma. The names of the study drugs involved in this study are: - Nivolumab - Ipilimumab - Placebo (IV solution with no medicine) - 89Zr-Df-IAB22M2C (optional sub-study)

    at UCLA

  • SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma (SURVIVE)

    open to eligible people ages 18 years and up

    The main purpose of this study is to determine whether adding SurVaxM to standard-of-care temozolomide chemotherapy is better than temozolomide treatment alone for patients with newly diagnosed glioblastoma. This study is designed to compare the length of survival in patients with newly diagnosed glioblastoma who receive temozolomide plus SurVaxM to that of patients treated with standard-of-care temozolomide plus placebo. This study aims to discover what effects, both good and bad, this combination of drugs may have on you and to see if the study drug (SurVaxM) can create an immune response in your blood that is directed against your cancer cells. This study also aims to determine whether treatment with SurVaxM plus temozolomide improves the survival of glioblastoma patients like yourself compared to treatment with temozolomide alone.

    at UCSF

  • Testing the Addition of an Anti-cancer Drug, Selinexor, to the Usual Chemotherapy Treatment (Temozolomide) for Brain Tumors That Have Returned After Previous Treatment

    open to eligible people ages 18 years and up

    This phase I/II trial tests the safety, side effects and best dose of selinexor given in combination with the usual chemotherapy (temozolomide) and compares the effect of this combination therapy vs. the usual chemotherapy alone (temozolomide) in treating patients with glioblastoma that has come back (recurrent). Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Giving selinexor in combination with usual chemotherapy (temozolomide) may shrink or stabilize the tumor better than the usual chemotherapy with temozolomide alone in patients with recurrent glioblastoma.

    at UC Davis UCSD

  • Testing the Addition of the Chemotherapy Drug Lomustine (Gleostine®) to the Usual Treatment (Temozolomide and Radiation Therapy) for Newly Diagnosed MGMT Methylated Glioblastoma

    open to eligible people ages 18-70

    This phase III trial compares the effect of adding lomustine to temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. Chemotherapy drugs, such as lomustine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy photons to kill tumor cells and shrink tumors. Adding lomustine to usual treatment of temozolomide and radiation therapy may help shrink and stabilize glioblastoma.

    at UC Irvine

  • Registry of Patients With Brain Tumors Treated With STaRT (GammaTiles)

    open to all eligible people

    The objectives of this registry study are to evaluate real-world clinical outcomes and patient reported outcomes that measure the effectiveness and safety of STaRT.

    at UCSD

  • 18F-FDG PET and Osimertinib in Evaluating Glucose Utilization in Patients With EGFR Activated Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well fludeoxyglucose F-18 (18F-FDG) positron emission tomography (PET) and osimertinib works in evaluating glucose utilization in patients with EGFR activated glioblastoma. Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. 18F-FDG PET imaging may help to detect changes in tumor glucose utilization, which may allow investigators to obtain an early read out on the impact of osimertinib on recurrent glioblastoma patients whose tumors have EGFR activation.

    at UCLA

  • A Clinical Trial of a Hemp-Derived, High Cannabidiol Product for Anxiety in Glioblastoma Patients

    Sorry, not yet accepting patients

    Glioblastoma (GBM) is the most common malignant brain tumor among adults. As the diagnosis is generally considered terminal, patients with GBM often suffer from anxiety and other comorbid conditions, including depression, pain, and sleep disturbance, all of which significantly impact their quality of life. Previous studies have demonstrated the potential of cannabinoids, particularly cannabidiol (CBD), to improve the aforementioned symptoms without conferring significant risks or side effects. Further, recent in-vitro and in-vivo work suggests potential cytotoxic and anti-tumor effects of CBD and other cannabinoids. This study includes a double-blind, placebo-controlled, 8-week randomized clinical trial assessing the impact of a custom formulated, full-spectrum, hemp-derived ultra-high CBD product on measures of anxiety, pain, and quality of life in newly-diagnosed GBM patients undergoing standard of care (SOC) treatment; the impact of this product vs. placebo on tumor progression will also be assessed. The proposed clinical trial will provide important information that does not currently exist regarding the potential efficacy of a novel full-spectrum, ultra-high CBD product to address clinical symptoms in patients with GBM.

    at UCSF

  • A Phase 1b/2, Multicenter, Open-label Study of ACP-196 in Subjects With Recurrent Glioblastoma Multiforme (GBM)

    Sorry, in progress, not accepting new patients

    A Phase 1b/2, Multicenter, Open-Label Study of ACP-196 in Subjects with Recurrent Glioblastoma Multiforme (GBM)

    at UCLA

  • A Phase 2 Study of the Ketogenic Diet vs Standard Anti-cancer Diet Guidance for Patients With Glioblastoma in Combination With Standard-of-care Treatment

    Sorry, not currently recruiting here

    This is a Phase 2, randomized two-armed, multi-site study of 170 patients with newly diagnosed glioblastoma multiforme. Patients will be randomized 1:1 to receive Keto Diet, or Standard Anti-Cancer Diet. All patients will receive standard of care treatment for their glioblastoma. The Keto Diet intervention will be for an 18-week period and conducted by trained research dietitians. Daily ketone and glucose levels will be recorded to monitor Keto Diet adherence. This two-armed randomized multi-site study aims to provide evidence to support the hypothesis that a Keto Diet vs. Standard Anti-Cancer Diet improves overall survival in newly diagnosed glioblastoma multiforme patients who receive standard of care treatment.

    at UCSF

  • A Phase III Trial of With Marizomib in Patients With Newly Diagnosed Glioblastoma

    Sorry, in progress, not accepting new patients

    The standard of care for newly diagnosed glioblastoma includes surgery, involved-field radiotherapy, and concomitant and six cycles of maintenance temozolomide chemotherapy, however the prognosis remains dismal. Marizomib has been tested in patients with newly diagnosed and recurrent glioblastoma in phase I and phase II studies. In patients with recurrent glioblastoma, marizomib was administered as a single agent or in combination with bevacizumab (NCT02330562). Based on encouraging observations, a phase I/II trial of marizomib in combination with TMZ/RT -->TMZ in newly diagnosed glioblastoma has been launched (NCT02903069) which explores safety and tolerability of this triple combination and which shall help to determine the dose for further clinical trials in glioblastoma. In this context, given that marizomib has been established as a safe addition to the standard TMZ/RT -->TMZ, a phase III study is considered essential to establishing its impact on overall survival.

    at UC Irvine UCSF

  • A Study in Recurrent Glioblastoma (GB)

    Sorry, in progress, not accepting new patients

    The purpose of the study is to see whether treatment with LY2157299 on its own, LY2157299 plus lomustine therapy or lomustine plus placebo can help participants with brain cancer

    at UCSF

  • A Study of Abemaciclib in Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This research study is studying a targeted therapy as a possible treatment for recurrent glioblastoma (GBM). The following intervention will be used in this study: -Abemaciclib

    at UCLA UCSF

  • A Study of Berubicin in Adult Subjects With Recurrent Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This is an open-label, multicenter, randomized, parallel, 2-arm, efficacy and safety study. Patients with GBM after failure of standard first line therapy will be randomized in a 2:1 ratio to receive berubicin or lomustine for the evaluation of OS. Additional endpoints will include response and progression outcomes evaluated by a blinded central reviewer for each patient according to RANO criteria. A pre-planned, non-binding futility analysis will be performed after approximately 30 to 50% of all planned patients have completed the primary endpoint at 6 months. This review will include additional evaluation of safety as well as secondary efficacy endpoints. Enrollment will not be paused during this interim analysis.

    at UC Irvine UCSD UCSF

  • A Study of the Effectiveness and Safety of Nivolumab Compared to Bevacizumab and of Nivolumab With or Without Ipilimumab in Glioblastoma Patients

    Sorry, in progress, not accepting new patients

    The purpose of the study is to compare the efficacy and safety of nivolumab administered alone versus bevacizumab in patients diagnosed with recurrent glioblastoma (a type of brain cancer, also known as GBM), and to evaluate the safety and tolerability of nivolumab administered alone or in combination with ipilimumab in patients with different lines of GBM therapy.

    at UCLA UCSF

  • A Trial of Enzastaurin Plus Temozolomide During and Following Radiation Therapy in Patients With Newly Diagnosed Glioblastoma With or Without the Novel Genomic Biomarker, DGM1

    Sorry, in progress, not accepting new patients

    This study will be conducted as a randomized, double-blind, placebo-controlled, multi-center Phase 3 study. Approximately 300 subjects with newly diagnosed glioblastoma who meet all eligibility criteria will be enrolled.

    at UC Irvine UCSD UCSF

  • Adavosertib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of adavosertib when given together with radiation therapy and temozolomide in treating patients with glioblastoma that is newly diagnosed or has come back. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving adavosertib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed or recurrent glioblastoma compared to radiation therapy and temozolomide alone.

    at UCLA UCSF

  • An Investigational Immuno-therapy Study of Temozolomide Plus Radiation Therapy With Nivolumab or Placebo, for Newly Diagnosed Patients With Glioblastoma (GBM, a Malignant Brain Cancer)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate patients with glioblastoma that is MGMT-methylated (the MGMT gene is altered by a chemical change). Patients will receive temozolomide plus radiation therapy. They will be compared to patients receiving nivolumab in addition to temozolomide plus radiation therapy.

    at UCLA UCSF

  • Anti-LAG-3 Alone & in Combination w/ Nivolumab Treating Patients w/ Recurrent GBM (Anti-CD137 Arm Closed 10/16/18)

    Sorry, in progress, not accepting new patients

    This phase I trial studies the safety and best dose of anti-LAG-3 (anti-LAG-3 monoclonal antibody BMS-986016) or urelumab alone and in combination with nivolumab in treating patients with glioblastoma that has returned (recurrent). Anti-LAG-3 monoclonal antibody BMS-986016, urelumab, and nivolumab are antibodies (a type of protein) that may stimulate the cells in the immune system to attack tumor cells. It is not yet known whether anti-LAG-3 monoclonal antibody BMS-986016 or urelumab alone or in combination with nivolumab may kill more tumor cells. (The Anti-CD137 antibody (BMS-663513 - urelumab) treatment arm closed by BMS on 10/16/18 due to closure of BMS Urelumab development program. Subjects currently on treatment may continue.)

    at UCLA

  • Autologous Dendritic Cells Loaded With Autologous Tumor Associated Antigens for Treatment of Newly Diagnosed Glioblastoma

    Sorry, in progress, not accepting new patients

    This is a single-arm, open-label phase II clinical trial in which approximately 55 patients with newly diagnosed glioblastoma (GBM) will be enrolled with the intent to receive an autologous dendritic cell vaccine consisting of autologous dendritic cells loaded with autologous tumor-associated antigens (AV-GBM-1).

    at UC Davis UC Irvine UCSD

  • Bevacizumab and Temozolomide in Treating Older Patients With Newly-Diagnosed Glioblastoma Multiforme or Gliosarcoma

    Sorry, in progress, not accepting new patients

    RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as temozolomide, also work in different ways to kill tumor cells or stop them from growing. Giving bevacizumab together with temozolomide may be a better way to block tumor growth. PURPOSE: This phase II trial is studying how well giving bevacizumab and temozolomide together works in treating older patients with newly diagnosed glioblastoma multiforme or gliosarcoma.

    at UCLA

  • BGB-290 and Temozolomide in Treating Patients With Recurrent Gliomas With IDH1/2 Mutations

    Sorry, in progress, not accepting new patients

    This phase I/II trial studies the side effects and how well BGB-290 and temozolomide work in treating patients with gliomas (brain tumors) with IDH1/2 mutations that have come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating patients with recurrent gliomas.

    at UCLA

  • Cediranib Maleate and Olaparib Compared to Bevacizumab in Treating Patients With Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well cediranib maleate and olaparib work compared to bevacizumab in treating patients with glioblastoma that has come back (recurrent). Cediranib maleate and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    at UCSD

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    Sorry, in progress, not accepting new patients

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    at UCSD UCSF

  • Dendritic Cell Vaccine for Patients With Brain Tumors

    Sorry, in progress, not accepting new patients

    The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

    at UCLA

  • Dose-Escalated Photon IMRT or Proton Beam Radiation Therapy Versus Standard-Dose Radiation Therapy and Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.

    at UC Davis UC Irvine

  • Efficacy and Safety of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) in Previously Treated Participants With Select Solid Tumors (MK-7902-005/E7080-G000-224/LEAP-005)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to determine the safety and efficacy of combination therapy with pembrolizumab (MK-3475) and lenvatinib (E7080/MK-7902) in participants with triple negative breast cancer (TNBC), ovarian cancer, gastric cancer, colorectal cancer (CRC), glioblastoma (GBM), biliary tract cancers (BTC), or pancreatic cancer.

    at UC Davis

  • ERC1671/GM-CSF/Cyclophosphamide for the Treatment of Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This phase II clinical trial studies how well ERC1671 plus Granulocyte-macrophage colony-stimulating factor (GM-CSF) plus Cyclophosphamide with Bevacizumab works compared to Placebo Injection plus Placebo Pill with Bevacizumab in treating patients with recurrent/progressive, bevacizumab naïve glioblastoma multiforme and gliosarcoma (World Health Organization (WHO) grade IV malignant gliomas, GBM).

    at UC Irvine

  • Feasibility of Individualized Therapy for Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    The current study will test the ability and likelihood of successfully implementing individualized combination treatment recommendations for adult patients with surgically-resectable recurrent glioblastoma in a timely fashion. Collected tumor tissue and blood will be examined using a new diagnostic testing called University of California, San Francisco (UCSF) 500 Cancer Gene Panel which is done at the UCSF Clinical Cancer Genomics Laboratory. The UCSF 500 Cancer Gene Panel will help identify genetic changes in the DNA of a patient's cancer, which helps oncologists improve treatment by identifying targeted therapies.

    at UCSF

  • Fimepinostat in Treating Brain Tumors in Children and Young Adults

    Sorry, in progress, not accepting new patients

    This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Immunotherapy Before and After Surgery for Treatment of Recurrent or Progressive High Grade Glioma in Children and Young Adults

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects of nivolumab and ipilimumab before and after surgery in treating children and young adults with high grade glioma that has come back (recurrent) or is increasing in scope or severity (progressive). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    at UCSF

  • INO-5401 and INO-9012 Delivered by Electroporation (EP) in Combination With Cemiplimab (REGN2810) in Newly-Diagnosed Glioblastoma (GBM)

    Sorry, in progress, not accepting new patients

    Phase 1/2 trial to evaluate safety, immunogenicity and preliminary efficacy of INO-5401 and INO-9012 in combination with cemiplimab (REGN2810), with radiation and chemotherapy, in subjects with newly-diagnosed glioblastoma (GBM).

    at UCSF

  • Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Lapatinib With Temozolomide and Regional Radiation Therapy for Patients With Newly-Diagnosed Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    The purpose of this study is to test the safety and effects of a combination of a study drug, Lapatinib, plus the administration of standard radiation therapy and an FDA approved drug Temozolomide (chemotherapy agent) in patients with newly diagnozed glioblastoma Multiforme.Currently, only radiation therapy and Temozolomide chemotherapy are standard treatment for brain cancer.Lapatinib has not been FDA approved for use in brain tumors treatment. It has been approved to be used as a daily treatment with other chemotherapies by the FDA for the treatment of advanced breast cancer. The purpose of this study is to find the answers to the following research questions: 1. Is Lapatinib given twice a week at higher dosages, with radiation therapy and Temozolomide, safe when given to patients with brain tumor? 2. What are the side effects of Lapatinib given twice a week at higher dosages when given with radiation therapy and Temozolomide and how often do they occur? 3. Can Lapatinib, radiation, and Temozolomide be effective in shrinking tumors when given to patients with brain tumors? 4. To determine whether the presence of genetic alterations specific proteins in the tumor samples can predict whether this study drug is effective on the tumor.

    at UCLA

  • LUMINOS-101: Lerapolturev (PVSRIPO) and Pembrolizumab in Patients With Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This Phase 2 single arm trial in patients with rGBM will characterize the efficacy, safety, tolerability and initial efficacy of lerapolturev intratumoral infusion followed by intravenous pembrolizumab 14 to 28 days later, and every 3 weeks, thereafter.

    at UCSF

  • Oral ONC201 in Recurrent GBM, H3 K27M Glioma, and Midline Glioma

    Sorry, in progress, not accepting new patients

    ONC201 is a new drug candidate that kills cancer cells but not normal cells in laboratory studies and has been previously evaluated in a phase I clinical trial in advanced cancer patients. This clinical trial will enroll patients with recurrent glioblastoma or recurrent WHO Grade IV gliomas with the H3 K27M mutation.

    at UCLA

  • Phase 3 Randomized, Double-blind, Controlled Study of ICT-107 in Glioblastoma

    Sorry, currently not accepting new patients, but might later

    ICT-107 consists of dendritic cells, prepared from autologous mononuclear cells that are pulsed with six synthetic peptides that were derived from tumor associated antigens (TAA) present on glioblastoma tumor cells. This is a Phase 3 study to evaluate ICT-107 in patients with newly diagnosed glioblastoma. Subjects will be randomized to receive standard of care chemoradiation (temozolomide (TMZ) with either ICT-107 or a blinded control. Reinfusion with the pulsed dendritic cells should stimulate cytotoxic T cells to specifically target glioblastoma tumour cells.

    at UC Irvine UCSD

  • Safety, Pharmacokinetics and Efficacy of Paxalisib (GDC-0084) in Newly-diagnosed Glioblastoma

    Sorry, in progress, not accepting new patients

    This protocol has a 2-part design: This phase 2 study is an open-label, multicenter, dose-escalation and expansion study to assess the safety, tolerability, recommended phase 2 dose (RP2D), pharmacokinetics (PK) and clinical activity of paxalisib in patients with newly-diagnosed glioblastoma (GBM) with unmethylated MGMT promoter status as adjuvant therapy following surgical resection and initial chemoradiation with temozolomide (TMZ).

    at UCLA

  • Sapanisertib Before and After Surgery in Treating Patients With Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This partially randomized pilot phase I trial studies how much sapanisertib reaches the brain tumor and how well it works when given before and after surgery in treating patients with glioblastoma that has grown or come back and requires surgery. Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA UCSF

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Study of a Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer

    Sorry, in progress, not accepting new patients

    The primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)

    at UC Irvine UCLA UCSD

  • Study of CC-122 to Evaluate the Safety, Tolerability, and Effectiveness for Patients With Advanced Solid Tumors, Non-Hodgkin's Lymphoma, or Multiple Myeloma

    Sorry, in progress, not accepting new patients

    The main purpose of this first in human study with CC-122 is to assess the safety and action of a new class of experimental drug (Pleiotropic Pathway Modulator) in patients with advanced tumors unresponsive to standard therapies and to determine the appropriate dosing level and regimen for later-stage clinical trials.

    at UCLA UCSF

  • Temozolomide With or Without Veliparib in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.

    at UC Davis UCSD UCSF

  • Testing the Ability of AMG 232 (KRT 232) to Get Into the Tumor in Patients With Brain Cancer

    Sorry, not currently recruiting here

    This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Testing the Addition of the Immune Therapy Drugs, Tocilizumab and Atezolizumab, to Radiation Therapy for Recurrent Glioblastoma

    Sorry, currently not accepting new patients, but might later

    This phase II trial studies the best dose and effect of tocilizumab in combination with atezolizumab and stereotactic radiation therapy in treating glioblastoma patients whose tumor has come back after initial treatment (recurrent). Tocilizumab is a monoclonal antibody that binds to receptors for a protein called interleukin-6 (IL-6), which is made by white blood cells and other cells in the body as well as certain types of cancer. This may help lower the body's immune response and reduce inflammation. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Fractionated stereotactic radiation therapy uses special equipment to precisely deliver multiple, smaller doses of radiation spread over several treatment sessions to the tumor. The goal of this study is to change a tumor that is unresponsive to cancer therapy into a more responsive one. Therapy with fractionated stereotactic radiotherapy in combination with tocilizumab may suppress the inhibitory effect of immune cells surrounding the tumor and consequently allow an immunotherapy treatment by atezolizumab to activate the immune response against the tumor. Combination therapy with tocilizumab, atezolizumab and fractionated stereotactic radiation therapy may shrink or stabilize the cancer better than radiation therapy alone in patients with recurrent glioblastoma.

    at UC Davis

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy in Glioblastoma (Brain Tumor)

    Sorry, in progress, not accepting new patients

    This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.

    at UC Davis UC Irvine UCSD

  • Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001

    Sorry, in progress, not accepting new patients

    This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.

    at UCSF

  • Trial of Niraparib in Participants With Newly-diagnosed Glioblastoma and Recurrent Glioma

    Sorry, not currently recruiting here

    This is an open-label, multi-center Phase 0 study with an expansion phase that will enroll up to 24 participants with newly-diagnosed glioblastoma and up to 18 recurrent glioma participants with IDH mutation and ATRX loss. The trial will be composed of a Phase 0 component (subdivided into Arm A and B) and a therapeutic expansion phase. Patients with tumors demonstrating a positive PK Response (in Arm A) or a positive PD Response (in Arm B) of the Phase 0 component of the study will graduate to a therapeutic expansion phase that combines therapeutic dosing of niraparib plus standard-of-care fractionated radiotherapy (in Arm A) or niraparib monotherapy (in Arm B) until progression of disease.

    at UCSF

  • Tumor Treating Fields With Chemoradiation in Newly Diagnosed GBM

    Sorry, in progress, not accepting new patients

    The study is an open-label pilot study in newly diagnosed glioblastoma patients following surgery. Eligible patients will receive treatment with tumor treating fields therapy using the Optune device starting less than 2 weeks prior to start of chemoradiation. Patients will receive radiation and temozolomide at a routine treatment dose and schedule.

    at UCSF

  • VB-111 in Surgically Accessible Recurrent/Progressive GBM

    Sorry, in progress, not accepting new patients

    This research study is studying a new viral cancer therapy, ofranergene obadenovec (VB-111), for recurrent or progressive glioblastoma (GBM), a brain tumor that is growing or progressing despite earlier treatment.

    at UCLA

  • Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.

    at UCLA UCSF

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    at UCLA UCSF

  • 3D Prediction of Patient-Specific Response

    Sorry, in progress, not accepting new patients

    This is a prospective, non-randomized, observational registry study evaluating a patient-specific ex vivo 3D (EV3D) assay for drug response using a patient's own biopsy or resected tumor tissue for assessing tissue response to therapy in patients with advanced cancers, including ovarian cancer, high-grade gliomas, and high-grade rare tumors.

    at UCSF

  • Expanded Access Protocol for GBM Patients With Already Manufactured DCVax®-L Who Have Screen-Failed Protocol 020221

    Sorry, not accepting new patients

    The study is an open-label expanded access study for patients for whom vaccine was manufactured during the Northwest Biotherapeutics' 020221 DCVax-L for GBM screening process, but who subsequently failed to meet specific enrollment criteria. Patients will receive therapy per investigator discretion (standard of care) as well as active vaccine per the 020221 protocol administration schedule. It is estimated that approximately 99 patients will enroll in this study.

    at UC Irvine UCLA

  • The PROGRAM-study: Awake Mapping Versus Asleep Mapping Versus No Mapping for Glioblastoma Resections

    Sorry, not currently recruiting here

    The study is designed as an international, multicenter prospective cohort study. Patients with presumed glioblastoma (GBM) in- or near eloquent areas on diagnostic MRI will be selected by neurosurgeons. Patients will be treated following one of three study arms: 1) a craniotomy where the resection boundaries for motor or language functions will be identified by the "awake" mapping technique (awake craniotomy, AC); 2) a craniotomy where the resection boundaries for motor functions will be identified by "asleep" mapping techniques (MEPs, SSEPs, continuous dynamic mapping); 3) a craniotomy where the resection boundaries will not be identified by any mapping technique ("no mapping group"). All patients will receive follow-up according to standard practice.

    at UCSF

Our lead scientists for Glioblastoma research studies include .

Last updated: