Pancreatic Neoplasms clinical trials at University of California Health
81 in progress, 44 open to eligible people
64Cu-LNTH-1363S in Patients With Sarcoma or Gastrointestinal Tract Cancer
open to eligible people ages 15 years and up
This is a multicenter, open-label, prospective Phase 1/2a study to assess safety and tolerability, establish dosimetry and to identify an optimal imaging dose (radioactivity) and imaging time window of 64Cu-LNTH-1363S, and to compare its imaging biodistribution with FAP expression by IHC in patients with sarcomas or GIT cancers. The study will be conducted in 2 parts (Part 1 and Part 2).
at UC Irvine
SHP2 Inhibitor in Patients With Solid Tumors Harboring KRAS of EGFR Mutations
open to eligible people ages 18 years and up
A Phase 1 dose escalation study in patients with advanced solid tumors harboring KRAS or EGFR mutations to determine the maximum tolerated dose and recommended Phase II dose of HBI-2376 and characterize its pharmacokinetic profile.
at UCLA
First-in-human Study of the Theranostic Pair [68Ga]Ga DOTA-5G and [177Lu]Lu DOTA-ABM-5G in Pancreatic Cancer
open to eligible people ages 18 years and up
This is a Phase I, first-in-human study to evaluate the safety and efficacy of the [68Ga]Ga DOTA-5G and [177Lu]Lu DOTA-ABM-5G theranostic pair in patients with locally advanced or metastatic pancreatic adenocarcinoma (PDAC).
at UC Davis
AMG 193 in Combination With Other Therapies in Participants With Advanced Gastrointestinal, Biliary Tract, or Pancreatic Cancers With Homozygous Methylthioadenosine Phosphorylase (MTAP)-Deletion (MTAPESTRY 103)
open to eligible people ages 18-100
The study aims to determine maximum tolerated dose (MTD) or recommended combination dose of the MTA-cooperative PRMT5 inhibitor AMG 193 administered in combination with other therapies in adult participants with metastatic or locally advanced methylthioadenosine phosphorylase (MTAP)-deleted gastrointestinal, biliary tract, or pancreatic cancers. The study also aims to determine the safety profile of AMG 193 administered in combination with other therapies in adult participants with metastatic or locally advanced MTAP-deleted gastrointestinal, biliary tract, or pancreatic cancers.
at UCLA UCSD
FMC-376 in Participants With KRAS G12C Mutated Solid Tumors
open to eligible people ages 18 years and up
The goal of this clinical trial is to evaluate FMC-376 in participants with advanced solid tumors with KRAS G12C mutations. This clinical trial will be conducted in 3 parts: Phase 1A (Dose Escalation), Phase 1B (Dose Expansion), and Phase 2 (Cohort Expansion). Multiple dose levels in participants with advanced solid tumors will be evaluated.
at UC Irvine UCSD UCSF
LY4170156 in Participants With Selected Advanced Solid Tumors
open to eligible people ages 18 years and up
The purpose of this study is to find out whether the study drug, LY4170156, is safe, tolerable and effective in participants with advanced solid tumors. The study is conducted in two parts - phase Ia (dose-escalation, dose-optimization) and phase Ib (dose-expansion). The study will last up to approximately 4 years.
at UCSD
Pan-KRAS Inhibitor LY4066434 in Participants With KRAS Mutant Solid Tumors
open to eligible people ages 18 years and up
The main purpose of the study is to assess whether the study drug, LY4066434, is safe and tolerable when administered to participants with locally advanced or metastatic solid tumors with certain KRAS mutations. LY4066434 will be given alone or in combination with other treatments. The study will have 2 parts: monotherapy dose escalation and dose optimization. The study is expected to last up to approximately 5 years.
at UCLA
A2B694, a Logic-gated CAR T, in Participants With Solid Tumors That Express MSLN and Have Lost HLA-A*02 Expression
open to eligible people ages 18 years and up
The goal of this study is to test A2B694, an autologous logic-gated Tmod™ CAR T-cell product in subjects with solid tumors including colorectal cancer (CRC), pancreatic cancer (PANC), non-small cell lung cancer (NSCLC), ovarian cancer (OVCA), mesothelioma (MESO), and other solid tumors that express MSLN and have lost HLA-A*02 expression. The main questions this study aims to answer are: Phase 1: What is the recommended dose of A2B694 that is safe for patients Phase 2: Does the recommended dose of A2B694 kill the solid tumor cells and protect the patient's healthy cells Participants will be required to perform study procedures and assessments, and will also receive the following study treatments: Enrollment and Apheresis in BASECAMP-1 (NCT04981119) Preconditioning Lymphodepletion (PCLD) Regimen A2B694 Tmod CAR T cells at the assigned dose
at UCLA UCSD
AMXI-5001 for Treatment in Patients With Advanced Malignancies
open to eligible people ages 18 years and up
ATLAS-101 is a Phase I/II clinical trial of AMXI-5001 in adult participants with advanced malignancies who have previously failed other therapies. The study has two phases. The purpose of Phase I (Dose Escalation) is to confirm the appropriate treatment dose and Phase II (Dose Expansion) is to characterize the safety and efficacy of AMXI-5001.
at UCLA
RSC-1255 for Treatment of Patients With Advanced Malignancies
open to eligible people ages 18 years and up
RSC-101 is a Phase 1a/1b clinical trial of RSC-1255 in adult study participants with advanced solid tumor malignancies who are intolerant of existing therapies known to provide clinical benefit, have disease that has progressed after standard therapy, or have previously failed other therapies. The study has two phases. The purpose of Phase 1a (Dose Escalation) is to confirm the appropriate treatment dose and Phase 1b (Dose Expansion) is to characterize the safety and efficacy of RSC-1255.
at UCLA
CA-4948 Added to Standard Chemotherapy to Treat Metastatic or Unresectable Pancreatic Cancer
open to eligible people ages 18 years and up
This phase I trial tests the safety, side effects, and best dose of emavusertib (CA-4948) in combination with gemcitabine and nab-paclitaxel in treating patients with pancreatic ductal adenocarcinoma that has spread from where it first started (primary site) to other places in the body (metastatic) or cannot be removed by surgery (unresectable). CA-4948 is in a class of medications called kinase inhibitors. It works by blocking the action of abnormal proteins called interleukin-1 receptor-associated kinase 4 (IRAK4) and FMS-like tyrosine kinase 3 (FLT3) that signal cells to multiply. This may help keep cancer cells from growing. The usual approach for patients with pancreatic ductal adenocarcinoma is treatment with chemotherapy drugs gemcitabine and nab-paclitaxel. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill cancer cells. Paclitaxel is in a class of medications called anti-microtubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Giving CA-4948 in combination with gemcitabine and nab-paclitaxel may shrink or stabilize metastatic or unresectable pancreatic ductal adenocarcinoma.
at UC Irvine
Ceralasertib (AZD6738) Alone and in Combination With Olaparib or Durvalumab in Patients With Solid Tumors
open to eligible people ages 18 years and up
This phase II trial studies how well ceralasertib, am Ataxia telangiectasia and Rad3-related (ATR) kinase inhibitor, works alone or in combination with olaparib or durvalumab in treating participants with renal cell carcinoma (RCC), urothelial carcinoma, all pancreatic cancers, endometrial cancer, and other solid tumors excluding clear cell ovarian cancer that have spread to nearby tissue or lymph nodes or other parts of the body. ATR kinase inhibitor AZD6738 and olaparib or durvalumab may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not known if giving ATR kinase inhibitor AZD6738 with or without olaparib or durvalumab may work better in treating participants with solid tumors.
at UCSF
Effectiveness Trial of Two Supportive Cancer Care Delivery Models for Adults With Cancer
open to eligible people ages 18 years and up
This cluster-randomized comparative effectiveness trial compares a technology-based supportive cancer care (SCC) approach with a redesigned team-based supportive cancer care (SCC) approach.
at UCSF
Determining the Biodistribution of an Imaging Tracer (68Ga-FAPi-46) in Patients With Solid Tumors or Hematologic Cancers
open to eligible people ages 18 years and up
This phase I trial is evaluating a new imaging tracer (68Ga-FAPi-46) with positron emission tomography (PET)/computed tomography (CT) to determine where and to which degree the tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues (the biodistribution) in patients with solid tumors or hematologic (blood) cancers. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 68Ga-FAPi-46. Because some cancers take up 68Ga-FAPi-46, it can be seen with PET. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential inflammatory tissue where it occurs in a patient's body. Combining a PET scan with a CT scan can help make the image easier to interpret. PET/CT scans are hybrid scanners that combine both modalities into a single scan during the same examination.
at UCLA
First in Human Study of TORL-2-307-ADC in Participants With Advanced Cancer
open to eligible people ages 18 years and up
This first-in-human study will evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of TORL-2-307-ADC in patients with advanced cancer
at UCLA
Intra-tumoral Mitazalimab (CD40 Antibody) With Irreversible Electroporation (IRE) in Locally Advanced Pancreas Cancer
open to eligible people ages 18 years and up
This is a phase I study of an agonistic CD40 antibody (mitazalimab) injected intratumorally at the time of surgical IRE in patients with locally advanced pancreatic cancer. Intratumoral delivery has potential to be more effective than systemic (intravenous) delivery while decreasing the systemic side effects of immunotherapy. We hypothesize that local delivery of mitazalimab at the time of IRE in patients with locally advanced pancreatic cancer will be safe, augment the immune effects of IRE, and decrease the risk of recurrence.
at UCLA UCSD
Lanreotide Versus Placebo Before Surgery to Prevent a Surgical Complication Called a Pancreatic Fistula
open to eligible people ages 18 years and up
This phase III trial compares the effect of using lanreotide before surgery to surgery alone in preventing pancreatic fistulas in patients with pancreatic cancer or a pancreatic lesion that could become cancerous. Lanreotide, a type of somatostatin analog similar to somatostatin (a hormone made by the body), and is used to treat certain types of gastroenteropancreatic neuroendocrine tumors, and carcinoid syndrome. It may help stop the body from making extra amounts of certain hormones, including growth hormone, insulin, glucagon, and hormones that affect digestion. It may also help keep certain types of tumor cells from growing. Patients with pancreatic cancer or pancreatic lesions may undergo surgery to remove parts of the pancreas, also called a distal pancreatectomy. Patients may experience complications after surgery, including pancreatic fistulas. A pancreatic fistula occurs when there is a small leak from the pancreas, causing fluids to collect. This can often lead to infection and other problems. Giving lanreotide before undergoing distal pancreatectomy may be more effective than surgery alone in preventing the development of a pancreatic fistula in patients with pancreatic cancer or a pancreatic lesion that could become cancerous.
at UCSD
Palbociclib and Binimetinib in RAS-Mutant Cancers, A ComboMATCH Treatment Trial
open to eligible people ages 18 years and up
This phase II ComboMATCH treatment trial evaluates the effectiveness of palbociclib and binimetinib in treating patients with RAS-mutated cancers. Palbociclib and binimetinib are both in a class of medications called kinase inhibitors. They work by blocking the action of abnormal proteins that signals cancer cells to multiply. This trial may help researchers understand if giving the combination of palbociclib and binimetinib can help improve the amount of time before the cancer grows in patients with patients with low grade serous ovarian cancer who have certain changes in the tumor DNA. This trial may also help researchers understand if giving the combination of palbociclib and binimetinib can help improve outcomes among patients with low grade serous ovarian cancer who have previously received a MEK inhibitor. For patients with other tumors, with the exception of lung cancer, colon cancer, melanoma and low grade serous ovarian cancers, this trial may help researchers understand if giving the combination of palbociclib and binimetinib can improve the clinical outcome of survival without progression in patients who have certain changes in their tumor's DNA.
at UCSD
Perioperative Fostamatinib With Gemcitabine and Nab-paclitaxel in Resectable Pancreatic Cancer
open to eligible people ages 18 years and up
This is a Phase 1b trial evaluating the combination of Fostamatinib, a Syk kinase inhibitor currently FDA-approved for chronic idiopathic thrombocytopenia purpura (ITP), with the standard of care chemotherapy agents gemcitabine and nab-paclitaxel, for the perioperative treatment of resectable non metastatic pancreatic ductal adenocarcinoma (PDAC).
at UCSD
MRTX849 in Patients With Cancer Having a KRAS G12C Mutation KRYSTAL-1
open to eligible people ages 18 years and up
This study will evaluate the safety, tolerability, drug levels, molecular effects, and clinical activity of MRTX849 (adagrasib) in patients with advanced solid tumors that have a KRAS G12C mutation.
at UC Irvine UCSD
Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers
open to eligible people ages 18 years and up
This is a prospective pilot protocol investigating whether ctDNA detection be improved by sampling the cancer draining vein versus the standard practice of sampling from a peripheral vein in patients who are undergoing biopsies for hepatobiliary and pancreatic cancers.
at UC Irvine
Anti-CEACAM5 ADC M9140 in Participants With Advanced Solid Tumors (PROCEADE PanTumor)
open to eligible people ages 18 years and up
The PROCEADE PanTumor study aims to investigate M9140 in multiple tumor types which express carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and it is therefore designed as a matrix study. This study aims to assess the antitumor activity, tolerability, safety, and pharmacokinetics (PK) of M9140 as monotherapy or in combination treatments in adult participants with locally advanced/metastatic CEACAM5 expressing tumors. There will be 3 substudies under this Master Protocol that may be conducted in parallel. - PROCEADE PanTumor: A Phase 1b/2, Multicenter, Open-Label Study of Anti-CEACAM5 Antibody-Drug Conjugate M9140 in Participants with Advanced Gastric Cancer (Substudy GC); - PROCEADE PanTumor: A Phase 1b/2, Multicenter, Open-Label Study of Anti-CEACAM5 Antibody-Drug Conjugate M9140 in Participants with Advanced Non-Small Cell Lung Cancer (Substudy NSCLC); - PROCEADE PanTumor: A Phase 1b/2, Multicenter, Open Label Study of Anti-CEACAM5 Antibody-Drug Conjugate M9140 in Participants With Advanced Pancreatic Cancer (Substudy PDAC).
at UCLA
AZD9574 as Monotherapy and in Combination With Anti-cancer Agents in Participants With Advanced Solid Malignancies
open to eligible people ages 18-130
This study will assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of AZD9574 individually and in combination with anti-cancer agents in participants with advanced cancer that has recurred/progressed.
at UCLA UCSF
CX-5461 in Patients With Solid Tumours and BRCA1/2, PALB2 or Homologous Recombination Deficiency (HRD) Mutation
open to eligible people ages 18 years and up
This is an open-label, multi-center, phase 1b study designed to determine a tolerable dose of CX-5461 administered by IV infusion on Day 1 and Day 8 of a 28-day cycle in patients with selected solid tumours and associated mutations for future Phase II trials. The safety and tolerability of CX-5461, preliminary evidence of antitumor effect and the effect of CX-5461 on the Health-Related Quality of Life (HRQoL) will also be evaluated. The study will also evaluate the predictive value of mutational signatures and explore the significance of dynamic changes in ctDNA levels and plasma DNA methylome profiling in this study's exploratory cohort.
at UCLA
IK-595 in RAS- or RAF-altered Advanced Tumors
open to eligible people ages 18 years and up
This is a Phase 1, FIH, Dose Escalation and Dose Expansion study to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) effects, and preliminary antitumor activity of IK-595, a MEK/RAF molecular glue, administered orally as monotherapy in patients with advanced solid tumors with gene alterations in the RAS- MAPK pathway for whom there are no further treatment options known to confer clinical benefit.
at UC Irvine
Orally Administered MOMA-313 in Participants With Advanced or Metastatic Solid Tumors
open to eligible people ages 18 years and up
This Phase 1, multi-center, open-label, dose escalation and dose optimization study is designed to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PDx), and preliminary clinical activity of MOMA-313 administered orally as a single agent or combination therapy in patients with homologous recombinant deficient solid tumors.
at UCSF
Quemliclustat and Chemotherapy Versus Placebo and Chemotherapy in Patients With Metastatic Pancreatic Ductal Adenocarcinoma
open to eligible people ages 18 years and up
The purpose of this study is to compare overall survival of quemliclustat, nab-paclitaxel and gemcitabine versus placebo, nab-paclitaxel and gemcitabine in all randomized patients.
at UCLA UCSD UCSF
RAS(ON) Inhibitors in Patients With Gastrointestinal Solid Tumors
open to eligible people ages 18 years and up
The purpose of this platform study is to evaluate the safety, tolerability, pharmacokinetics (PK), and preliminary antitumor activity of novel RAS(ON) inhibitors combined with Standard(s) of Care (SOC) or with novel agents. The current subprotocols include the following: Subprotocol A: RMC-6236 + 5-fluorouracil-based regimens Subprotocol B: RMC-6236 + cetuximab with or without mFOLFOX6 Subprotocol C: RMC-6236 + gemcitabine + nab-paclitaxel Subprotocol D: RMC-9805 with or without RMC-6236 + 5-fluorouracil-based regimens Subprotocol E: RMC-9805 with or without RMC-6236 + cetuximab with or without mFOLFOX6 Subprotocol F: RMC-9805 with or without RMC-6236 + gemcitabine + nab-paclitaxel
at UCLA UCSD
RMC-6236 in Patients With Advanced Solid Tumors Harboring Specific Mutations in RAS
open to eligible people ages 18 years and up
Evaluate the safety and tolerability of RMC-6236 in adults with specific RAS mutant advanced solid tumors.
at UC Irvine UCLA
RMC-6291 in Combination with RMC-6236 in Participants with Advanced KRAS G12C Mutant Solid Tumors
open to eligible people ages 18-125
This study is to evaluate the safety, tolerability, and PK profiles of RMC-6291 and RMC-6236 in adults with KRAS G12C-mutated solid tumors.
at UC Davis UC Irvine
RMC-9805 in Participants With KRAS G12D-Mutant Solid Tumors
open to eligible people ages 18 years and up
This study is to evaluate the safety and tolerability of RMC-9805 as monotherapy and in combination with RMC-6236 in adults with KRAS G12D-mutant solid tumors.
at UC Davis UCSF
BCA101 Monotherapy and in Combination Therapy in Patients With EGFR-driven Advanced Solid Tumors
open to eligible people ages 18 years and up
The investigational drug to be studied in this protocol, BCA101, is a first-in-class compound that targets both EGFR with TGFβ. Based on preclinical data, this bifunctional antibody may exert synergistic activity in patients with EGFR-driven tumors.
at UC Davis UCLA UCSD
New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer
open to eligible people ages 18 years and up
This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
at UC Davis UC Irvine
Sunitinib Malate to Lutetium Lu 177 Dotatate (Lutathera) in Pancreatic Neuroendocrine Tumors
open to eligible people ages 18 years and up
This phase I trial tests the safety, side effects, and best dose of sunitinib malate in combination with lutetium Lu 177 dotatate in treating patients with pancreatic neuroendocrine tumors. Sunitinib malate is in a class of medications called kinase inhibitors and a form of targeted therapy that blocks the action of abnormal proteins called VEGFRs that signal tumor cells to multiply. This helps stop or slow the spread of tumor cells. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and not harm normal cells. It is also a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of tumor cells, known as somatostatin receptors, so that radiation can be delivered directly to the tumor cells and kill them. Giving sunitinib malate and lutetium Lu 177 dotatate in combination may be safer and more effective in treating pancreatic neuroendocrine tumors than giving either drug alone.
at UC Irvine
Testing the Safety of the Anti-Cancer Drugs Durvalumab and Olaparib During Radiation Therapy for Locally Advanced Unresectable Pancreatic Cancer
open to eligible people ages 18 years and up
This phase I trial tests the safety and tolerability of olaparib in combination with durvalumab and radiation therapy in patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. The combination of targeted therapy with olaparib, immunotherapy with durvalumab and radiation therapy may stimulate an anti-tumor immune response and promote tumor control in locally advanced unresectable pancreatic cancer.
at UC Irvine
Testing the Use of the Usual Chemotherapy Before and After Surgery for Removable Pancreatic Cancer
open to eligible people ages 18 years and up
This phase III trial compares perioperative chemotherapy (given before and after surgery) versus adjuvant chemotherapy (given after surgery) for the treatment of pancreatic cancer that can be removed by surgery (removable/resectable). Chemotherapy drugs, such as fluorouracil, irinotecan, leucovorin, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before and after surgery (perioperatively) may work better in treating patients with pancreatic cancer compared to giving chemotherapy after surgery (adjuvantly).
at UC Davis UC Irvine UCSD UCSF
PLATINUM Trial: Optimizing Chemotherapy for the Second-Line Treatment of Metastatic BRCA1/2 or PALB2-Associated Metastatic Pancreatic Cancer
open to eligible people ages 18 years and up
This phase II/III trial compares the effect of the 3-drug chemotherapy combination of nab-paclitaxel, gemcitabine, plus cisplatin versus the 2-drug chemotherapy combination of nab-paclitaxel plus gemcitabine for the treatment of patients with pancreatic cancer that has spread to other places in the body (metastatic) and a known genetic mutation in the BRCA1, BRCA2, or PALB2 gene.
at UC Irvine UCSF
Virtual Reality for GI Cancer Pain to Improve Patient Reported Outcomes
open to eligible people ages 18-99
Patients with digestive tract malignancy often experience severe and unremitting abdominal pain that negatively affects physical, emotional, and social function, as well as health related quality of life (HRQOL). Therapeutic virtual reality (VR) has emerged as a promising and evidence-based treatment modality for cancer pain. Users of VR wear a pair of goggles with a close-proximity screen in front of the eyes that creates a sensation of being transported into lifelike, three-dimensional worlds. To date, VR has been limited to short-term clinical trials for cancer pain. Moreover, limited research exists on theory-based VR modalities beyond mere distraction, such as VR that employs acceptance and commitment therapy (ACT) with components of biofeedback and mindfulness. To bridge these gaps, this study seeks to: (1) assess the impact of immersive VR on patient-reported outcomes (PROs), including pain, activity metrics, and opioid use among patients with visceral pain from a digestive tract malignancy; (2) assess differences in PROs, activity metrics, and opioid use between skills-based VR therapy vs. distraction VR therapy; and (3) determine patient-level predictors of VR treatment response in visceral cancer pain. To address these aims, the study will measure PROs and opioid use in 360 patients randomized among 3 groups and follow them for 60 days after enrollment: (1) an enhanced VR group receiving skills-based VR; (2) a distraction-based VR group receiving patient-selected VR videos; and (3) a VR sham control group using a VR headset with 2-D content. The results will inform best practices for the implementation of VR for visceral cancer pain management and guide selection of patient-tailored experiences.
at UCLA
American Hepato-Pancreato-Biliary Association (AHPBA) Pancreatic Irreversible Electroporation (IRE) Registry
open to eligible people ages 18 years and up
The purpose of this study is to create a registry to provide insight into treatment selection and treatment outcome of pancreatic IRE in order to develop an evidence base such that physicians can provide the best possible care to patients with pancreatic cancer requiring surgical interventions. The investigators seek a better understanding of the uses of ablation in the treatment of unresectable soft tissue pancreatic tumors and the limitations, concerns and complications that earlier users have.
at UCSD
Biospecimen Collection to Identify Gene Mutations for High Risk Pancreatic Cancer in Pediatric Patients, INSPPIRE 2 Study
open to eligible people ages up to 17 years
This clinical trial collects blood, saliva, urine, or stool samples to help identify possible genetic mutations that may increase a person's chance at developing pancreatic cancer. Finding genetic markers among pediatric patients with acute recurrent pancreatitis and chronic pancreatitis may help identify patients who are at risk of pancreatic cancer.
at UCSF
Pancreatic Cancer Early Detection Consortium
open to eligible people ages 18-90
The purpose of the Pancreatic Cancer Early Detection (PRECEDE) Consortium is to conduct research on multiple aspects of early detection and prevention of pancreatic ductal adenocarcinoma (PDAC) by establishing a multisite cohort of individuals with family history of PDAC and/or individuals carrying pathogenic/likely pathogenic germline variants (PGVs) in genes linked to PDAC risk for longitudinal follow up.
at UC Davis UC Irvine UCLA UCSD UCSF
Pancreatic Cancer Screening
open to eligible people ages 18 years and up
This study investigates how often abnormal findings from routine magnetic resonance imaging occur in people with genetic mutations in BReast CAncer gene. (BRCA), ataxia telangiectasia mutated gene (ATM), or PALB2 screened for pancreatic cancer. This study may lead to a greater understanding of cancer and potentially, improvements in cancer screening and treatment.
at UCSF
Solid Tumor Analysis for HLA Loss of Heterozygosity (LOH) and Apheresis for CAR T- Cell Manufacturing
open to eligible people ages 18 years and up
Objective: To collect information on how often a solid tumor cancer might lose the Human Leukocyte Antigen (HLA) by next generation sequencing and perform apheresis to collect and store an eligible participant's own T cells for future use to make CAR T-Cell therapy for their disease treatment. Design: This is a non-interventional, observational study to evaluate participants with solid tumors with a high risk of relapse for incurable disease. No interventional therapy will be administered on this study. Some of the information regarding the participant's tumor analysis may be beneficial to management of their disease. Participants that meet all criteria may be enrolled and leukapheresed (blood cells collected). The participant's cells will be processed and stored for potential manufacture of CAR T-cell therapy upon relapse of their cancer.
at UCLA UCSD
UCSF PANC Cyst Registry
open to eligible people ages 18 years and up
Pancreatic cysts are found incidentally on 15-50% of CT and MRIs for all indications and their prevalence is increasing. Many of these cysts may be precursors to pancreatic cancer, and thus pose a substantial risk, however, the vast majority are benign. Increased detection of pancreatic cysts provides an opportunity to diagnose pancreatic malignancy at an early, curable stage yet also increases the potential to over-treat clinically insignificant lesions. This presents a clinical challenge to prevent unnecessary resection of indolent disease, with associated risks of infections, bleeding, diabetes, and costly disability. Unfortunately, there is little information on the epidemiology and natural history of pancreatic cysts to help guide management.
at UCSF
9-ING-41 in Patients with Advanced Cancers
Sorry, in progress, not accepting new patients
GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.
at UC Irvine UCSF
TC-510 In Patients With Advanced Mesothelin-Expressing Cancer
Sorry, in progress, not accepting new patients
TC-510 is a novel cell therapy that consists of autologous genetically engineered T cells expressing two synthetic constructs: first, a single-domain antibody that recognizes human Mesothelin, fused to the CD3-epsilon subunit which, upon expression, is incorporated into the endogenous T cell receptor (TCR) complex and second, a PD-1:CD28 switch receptor, which is expressed on the surface of the T cell, independently from the TCR. The PD-1:CD28 switch receptor comprises the PD-1 extracellular domain fused to the CD28 intracellular domain via a transmembrane domain. Thus, the switch is designed to produce a costimulatory signal upon engagement with PD-L1 on cancer cells.
at UCSF
ERAS-007 in Patients With Advanced Gastrointestinal Malignancies
Sorry, in progress, not accepting new patients
- To evaluate the safety and tolerability of escalating doses of ERAS-007 in combination with other cancer therapies in study participants with advanced GI malignancies. - To determine the Maximum Tolerated Dose (MTD) and/or Recommended Dose (RD) of ERAS-007 administered in combination with other cancer therapies. - To evaluate the antitumor activity of ERAS-007 in combination with other cancer therapies. - To evaluate the PK profiles of ERAS-007 and other cancer therapies when administered in combination.
at UC Irvine UCSF
MGC028 in Participants With Advanced Solid Tumors
Sorry, not currently recruiting here
The goal of this clinical trial is to characterize the safety, tolerability, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) or maximum administered dose of MGC028 (if no MTD is defined). The study will enroll adult participants with relapsed or refractory, unresectable, locally advanced of metastatic solid tumors known to express ADAM9. The main question the study aims to answer is: - What types of side effects will participants experience when receiving MGC028? - Can MGC028 cause cancer to shrink, remain stable, or able to control disease progression of participants with advanced solid tumors? Participants will - Undergo screening procedures to determine eligibility - Receive study treatments initially every 3 weeks. - Have blood samples taken for routine and research tests - Have other examinations to check heart and lung function, and general health status - Be asked about any side effects that may be happening or other medications you are taking. The study doctor will provide treatment for side effects, if necessary. - Have the study doctor assess your tumor status at regular intervals to determine how you are responding to treatment.
at UCSF
PF-08046049/SGN-BB228 in Advanced Melanoma and Other Solid Tumors
Sorry, in progress, not accepting new patients
This study will test the safety of a drug called PF-08046049/SGN-BB228 in participants with melanoma and other solid tumors that are hard to treat or have spread through the body. It will also study the side effects of this drug. A side effect is anything a drug does to the body besides treating the disease. This study will have 3 parts. Parts A and B of the study will find out how much PF-08046049/SGN-BB228 should be given to participants. Part C will use the information from Parts A and B to see if PF-08046049/SGN-BB228 is safe and if it works to treat solid tumor cancers.
at UCLA UCSF
SNS-101 (Anti VISTA) Monotherapy and in Combination With Cemiplimab in Patients With Advanced Solid Tumors
Sorry, in progress, not accepting new patients
Phase 1/2 study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy of SNS-101, a novel anti VISTA IgG1 monoclonal antibody as monotherapy or in combination with cemiplimab in patients with advanced solid tumors.
at UCLA
PK and Efficacy of ONC-392 in Monotherapy and in Combination of Anti-PD-1 in Advanced Solid Tumors and NSCLC
Sorry, in progress, not accepting new patients
This is a First-in-Human Phase IA/IB/II open label dose escalation study of intravenous (IV) administration of ONC-392, a humanized anti-CTLA4 IgG1 monoclonal antibody, as single agent and in combination with pembrolizumab in participants with advanced or metastatic solid tumors and non-small cell lung cancers.
at UC Davis
Zenocutuzumab (MCLA-128) in Patients With Solid Tumors Harboring an NRG1 Fusion (eNRGy)
Sorry, in progress, not accepting new patients
This is a Phase I/II, open-label, multi-center, multi-national, dose escalation, single agent study to assess the safety, tolerability, PK, PD, immunogenicity and anti-tumor activity of zenocutuzumab (MCLA-128) in patients with solid tumors harboring an NRG1 fusion (eNRGy)
at UC Irvine
Naporafenib (ERAS-254) Administered With Trametinib in Patients With RAS Q61X Mutations
Sorry, in progress, not accepting new patients
To evaluate the efficacy of naporafenib administered with trametinib in patients with rat sarcoma viral oncogene (RAS) Q61X solid tumors - To evaluate the safety and tolerability of naporafenib administered with trametinib in patients with RAS Q61X solid tumors - To characterize the pharmacokinetic (PK) profile of naporafenib and trametinib when administered to patients with RAS Q61X solid tumors
at UCSF
A2B530, a Logic-gated CAR T, in Participants With Solid Tumors That Express CEA and Have Lost HLA-A*02 Expression
Sorry, in progress, not accepting new patients
The goal of this study is to test A2B530,an autologous logic-gated Tmod™ CAR T-cell product in subjects with solid tumors including colorectal cancer (CRC), pancreatic cancer (PANC), non-small cell lung cancer (NSCLC), and other solid tumors that express CEA and have lost HLA-A*02 expression. The main questions this study aims to answer are: - Phase 1: What is the maximum or recommended dose of A2B530 that is safe for patients - Phase 2: Does the recommended dose of A2B530 kill the solid tumor cells and protect the patient's healthy cells Participants will be required to perform study procedures and assessments, and will also receive the following study treatments: - Enrollment and Apheresis in BASECAMP-1 (NCT04981119) - Preconditioning Lymphodepletion (PCLD) Regimen - A2B530 Tmod CAR T cells at the assigned dose
at UCLA UCSD
AB680 in Participants With Gastrointestinal Malignancies
Sorry, in progress, not accepting new patients
This is a Phase 1, open-label, dose-escalation, and dose-expansion, with a gated randomization portion, study to evaluate the safety, tolerability, pharmacokinetic, pharmacodynamic and clinical activity of AB680 in combination with zimberelimab (AB122), nab-paclitaxel and gemcitabine in participants with advanced pancreatic cancer.
at UCLA
Enable Continued Treatment Access for Subjects Previously Enrolled in Studies of Ruxolitinib
Sorry, in progress, not accepting new patients
The purpose of this study is to provide continued supply of ruxolitinib alone, ruxolitinib plus background cancer therapy, or background cancer therapy alone to subjects from an Incyte-sponsored study of ruxolitinib that has reached its study objectives or has been terminated. This study will also provide another mechanism for reporting adverse events related to study drug safety.
at UCLA
M6620 and Irinotecan Hydrochloride in Treating Patients With Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery
“Experimental targeted cancer therapy and chemotherapy combination for tumors that have returned, spread, or cannot be removed”
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of M6620 and irinotecan hydrochloride in treating patients with solid tumors that have spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). M6620 and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
at UC Davis UCSF
Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)
Sorry, in progress, not accepting new patients
This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
at UC Irvine UCSD UCSF
Claudin18.2 CAR-T (CT041) in Patients with Gastric, Pancreatic Cancer, or Other Specified Digestive Cancers
Sorry, in progress, not accepting new patients
A Phase 1b/2, open label, multi-center, clinical study of Chimeric Antigen Receptor T Cells (CAR-T) targeting claudin18.2 in patients with advanced gastric, pancreatic or other specified digestive system cancers
at UCSD UCSF
Comparing Two Methods to Follow Patients With Pancreatic Cysts
Sorry, in progress, not accepting new patients
The purpose of this study is to compare the two approaches for monitoring pancreatic cysts. The study doctors want to compare more frequent monitoring vs less frequent monitoring in order to learn which monitoring method leads to better outcome for patients with pancreatic cysts.
at UC Davis UCLA UCSD UCSF
Comparing Two Treatment Combinations, Gemcitabine and Nab-Paclitaxel With 5-Fluorouracil, Leucovorin, and Liposomal Irinotecan for Older Patients With Pancreatic Cancer That Has Spread
Sorry, in progress, not accepting new patients
This phase II trial compares two treatment combinations: gemcitabine hydrochloride and nab-paclitaxel, or fluorouracil, leucovorin calcium, and liposomal irinotecan in older patients with pancreatic cancer that has spread to other places in the body (metastatic). Drugs used in chemotherapy, such as gemcitabine hydrochloride, nab-paclitaxel, fluorouracil, leucovorin calcium, and liposomal irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study may help doctors find out which treatment combination is better at prolonging life in older patients with metastatic pancreatic cancer.
at UC Irvine
Dose Expansion Study of RMC-6291 Monotherapy in Subjects With Advanced KRASG12C Mutant Solid Tumors
Sorry, in progress, not accepting new patients
The purpose of this study is to evaluate the safety, tolerability, and pharmacokinetics (PK) of escalating doses of RMC-6291 (KRAS G12C(ON) inhibitor) monotherapy in adult subjects with advanced solid tumors and to identify the maximum tolerated dose (MTD), and the recommended Phase 2 dose.
at UC Davis UC Irvine UCSF
Tisotumab Vedotin for Patients With Solid Tumors
Sorry, in progress, not accepting new patients
This trial will study tisotumab vedotin to find out whether it is an effective treatment alone or with other anticancer drugs for certain solid tumors and what side effects (unwanted effects) may occur. There are seven parts to this study. - In Part A, the treatment will be given to participants every 3 weeks (3-week cycles). - In Part B, participants will receive tisotumab vedotin on Days 1, 8, and 15 every 4-week cycle. - In Part C, participants will receive tisotumab vedotin on Days 1 and 15 of every 4-week cycle. - In Part D, participants will be given treatment on Day 1 of every 3-week cycle. Participants in Part D will get tisotumab vedotin with either: - Pembrolizumab or, - Pembrolizumab and carboplatin, or - Pembrolizumab and cisplatin - In Part E, participants will receive tisotumab vedotin on Days 1 and 15 of every 4-week cycle. - In Part F, participants will receive tisotumab vedotin on Days 1, 15, and 29 of every 6-week cycle. Participants in Part F will get tisotumab vedotin with pembrolizumab. - In Part G, participants will receive tisotumab vedotin on Days 1, 15, and 29 of every 6-week cycle. Participants in Part G will get tisotumab vedotin with pembrolizumab and carboplatin.
at UC Davis UCSD
Testing the Combination of Anetumab Ravtansine With Either Nivolumab, Nivolumab and Ipilimumab, or Gemcitabine and Nivolumab in Advanced Pancreatic Cancer
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of anetumab ravtansine when given together with nivolumab, ipilimumab and gemcitabine hydrochloride in treating patients with mesothelin positive pancreatic cancer that has spread to other places in the body (advanced). Anetumab ravtansine is a monoclonal antibody, called anetumab ravtansine, linked to a chemotherapy drug called DM4. Anetumab attaches to mesothelin positive cancer cells in a targeted way and delivers DM4 to kill them. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving anetumab ravtansine together with nivolumab, ipilimumab, and gemcitabine hydrochloride may work better in treating patients with pancreatic cancer.
at UC Davis UC Irvine
Experimental PET Imaging Scans Before Cancer Surgery to Study the Amount of PET Tracer Accumulated in Normal and Cancer Tissues
Sorry, in progress, not accepting new patients
This phase I trial studies a new imaging technique called FAPi PET/CT to determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulate in normal and cancer tissues in patients with non-prostate cancer. The research team also want to know whether what they see on PET/CT images represents the tumor tissue being excised from the patient's body. The research team is also interested to investigate another new imaging technique called PSMA PET/CT. Participants will be invited to undergo another PET/CT scan, with the PSMA tracer (68Ga-PSMA-11). This is not required but just an option for volunteer patients. Patients who have not received an 18F-FDG PET/CT within one month of enrollment will also undergo an FDG PET/CT scan. The PET/CT scanner combines the PET and the CT scanners into a single device. This device combines the anatomic (body structure) information provided by the CT scan with the metabolic information obtained from the PET scan. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of, in the case of this research, 68Ga-PSMA-11 and 68Ga-FAPi, and 18F-FDG (if applicable). Because some cancers take up 68Ga-PSMA-11 and/or 68Ga-FAPi it can be seen with PET. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs where it occurs in patient's body. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors. The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers. PSMA stands for Prostate Specific Membrane Antigen. This name is incorrect as PSMA is also found in many other cancers. The function of PSMA is not well understood but imaging studies have shown that PSMA can be detected with PET in many non-prostate cancers. Imaging FAP with PET/CT may in the future provide additional information about various cancers.
at UCLA
First-in-Human Positron Emission Tomography Study Using the 18F-αvβ6-Binding-Peptide
Sorry, in progress, not accepting new patients
This clinical trial studies the side effects of 18F-alphavbeta6-binding-peptide and how well it works in imaging patients with primary or cancer that has spread to the breast, colorectal, lung, or pancreatic. Radiotracers, such as 18F-alphavbeta6-binding-peptide, may improve the ability to locate cancer in the body.
at UC Davis
First in Human Study of TORL-2-307-MAB in Participants With Advanced Cancer
Sorry, in progress, not accepting new patients
This first-in-human study will evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of TORL-2-307-MAB in patients with advanced cancer
at UCLA
FOLFIRI or Modified FOLFIRI and Veliparib as Second Line Therapy in Treating Patients With Metastatic Pancreatic Cancer
Sorry, in progress, not accepting new patients
This randomized phase II trial studies how well modified irinotecan hydrochloride, leucovorin calcium, fluorouracil (FOLFIRI) and veliparib as a second line of therapy work compared to FOLFIRI in treating patients with pancreatic cancer that has come back after a period of improvement (metastatic). Drugs used in chemotherapy, such as irinotecan hydrochloride, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether modified FOLFIRI and veliparib as second line therapy is more effective than FOLFIRI alone in treating metastatic pancreatic cancer.
at UC Davis
Malnutrition Screening and Dietary Intervention to Improve Nutrition Outcomes in Patients With Unresectable Pancreatic Cancer
Sorry, in progress, not accepting new patients
This clinical trial compares the effect of malnutrition screening and dietary intervention to standard nutrition care on patients with pancreatic cancer that cannot be removed by surgery (unresectable). Fewer than 20% of patients diagnosed with unresectable pancreatic cancer do not survive one year after diagnosis so treatment often focuses on improving quality of life. Many patients experience increasing pain, nausea, vomiting, loss of appetite, weight loss and weakness. Behavioral interventions use techniques to help patients change the way they react to environmental triggers that may cause a negative reaction. Screening for inadequate nutrition (malnutrition) and providing weekly nutritional support may be effective methods to improve nutritional status and improve overall quality of life for patients with unresectable pancreatic cancer.
at UCLA
P-MUC1C-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With Advanced or Metastatic Solid Tumors
Sorry, in progress, not accepting new patients
A Phase 1, open label, dose escalation and expanded cohort study of P-MUC1C-ALLO1 in adult subjects with advanced or metastatic epithelial derived solid tumors, including but not limited to the tumor types listed below.
at UC Irvine UCSD UCSF
Futibatinib in Combination With PD-1 Antibody Based Standard of Care in Solid Tumors
Sorry, in progress, not accepting new patients
This is a nonrandomized, uncontrolled, open-label, multicenter Phase 2 study to evaluate the efficacy, safety, and tolerability of futibatinib in combination with PD-1 antibody-based SoC therapy in adult patients with solid tumors.
at UCLA
TTX-030 and Chemotherapy With or Without Budigalimab for 1L mPDAC Patients
Sorry, in progress, not accepting new patients
This is a Phase 2, multicenter, open-label, 3-arm, randomized, parallel group study to evaluate the efficacy and safety of TTX-030 with or without budigalimab in combination with chemotherapy (gemcitabine + nab-paclitaxel) in subjects with metastatic PDAC who did not have prior treatment for metastatic disease and are eligible to receive gemcitabine and nab-paclitaxel chemotherapy as SOC.
at UCLA
Daraxonrasib (RMC-6236) in Patients With Previously Treated Metastatic Pancreatic Ductal Adenocarcinoma (PDAC)
Sorry, not currently recruiting here
The purpose of this study is to evaluate the safety and efficacy of a novel RAS(ON) inhibitor compared to standard(s) of care (SOC) treatment.
at UCLA UCSD UCSF
Stereotactic MRI-guided On-table Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer
Sorry, in progress, not accepting new patients
High-dose magnetic resonance imaging (MRI) guided hypofractionated radiation therapy delivered using daily adaptive dose planning has been shown in a retrospective study to result in improved overall survival, relative to patients receiving lower radiation doses, in patients with locally advanced pancreatic cancer, without increasing the rate of serious gastrointestinal toxicity. The goal of the proposed trial is to investigative in a controlled, prospective manner the robustness of this outcome, and to track quality of life over a 5-year trial period.
at UCLA
Avutometinib (VS-6766) +Defactinib With Gemcitabine and Nab-paclitaxel in Patients With Pancreatic Cancer
Sorry, in progress, not accepting new patients
This study will assess the safety and efficacy of avutometinib (VS-6766) and defactinib in combination with gemcitabine and nab-paclitaxel in patients with Pancreatic Ductal Adenocarcinoma (PDAC) who have been previously untreated.
at UCSF
Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)
“Will identifying genetic abnormalities in tumor cells help doctors plan better, more personalized treatment for cancer patients?”
Sorry, in progress, not accepting new patients
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
at UC Davis UC Irvine UCSD
Anti-cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, With a Specific Focus on Patients With Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer
Sorry, in progress, not accepting new patients
This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may be safe and tolerable in treating patients with advanced solid tumors.
at UC Irvine
Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients With Pancreatic Cancer That Has Spread With Inherited BRCA Mutations
Sorry, not currently recruiting here
This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cell's genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
at UC Irvine
Trametinib and Hydroxychloroquine in Treating Patients With Pancreatic Cancer
Sorry, in progress, not accepting new patients
This phase I trial studies the sides effects and best dose of hydroxychloroquine when given together with trametinib in treating patients with pancreatic cancer that has spread to nearby tissue, lymph nodes or other places in the body and cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as hydroxychloroquine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trametinib together with hydroxychloroquine may work better in treating patients with pancreatic cancer.
at UCSF
Registry Study of NanoKnife IRE for Stage 3 Pancreatic Cancer
Sorry, in progress, not accepting new patients
This multicenter, observational study will evaluate the effectiveness and safety of the NanoKnife System when used for the ablation of Stage 3 pancreatic adenocarcinoma (Stage 3 PC). Eligible patients will be recruited over a 36-month period and participating institutions will enroll and provide data on consecutive patients that meet inclusion and exclusion criteria. Each patient will be followed up for the duration of the study or until death. The study will include two (2) cohorts: patients who received standard of care (SOC) and received irreversible electroporation (IRE) [IRE cohort], and patients who were treated with SOC and did not receive IRE [SOC cohort].
at UCSD
Treatment of Cancers With Rearranged During Transfection (RET) Activation
Sorry, not accepting new patients
Expanded access for participants with cancer with RET activation who are ineligible for an ongoing selpercatinib (also known as LOXO-292) clinical trial or have other considerations that prevent access to selpercatinib through an existing clinical trial. The treating physician/investigator contacts Lilly when, based on their medical opinion, a patient meets the criteria for inclusion in the expanded access program.
at UCLA UCSD UCSF
Our lead scientists for Pancreatic Neoplasms research studies include Pamela Munster ZhaoPing Li Edward J. Kim Andrew H. Ko David Oh Jonathan Goldman, MD Arash Naeim, MD Adil Daud Andrew M. Lowy Shyam Srinivas, MD, PhD Farshid Dayyani Julia Carnevale Sandip Patel, MD Edward B. Garon, MD, MS Timothy R. Donahue, MD Rahul Aggarwal, MD Paige M Bracci, PhD, MPH, MS Julie L Sutcliffe Emily Perito Rebekah R White, MD Zev A. Wainberg, MD Kimberly S Kirkwood, MD Jennifer Valerin, MD Peter Vu Nicholas Butowski Jeremie Calais Michael Cheng Daniel Low, PhD Tianhong Li, MD Deborah J. Wong, MD, PhD Lee S. Rosen, MD J. Randolph Hecht, MD.
Last updated: