Skip to main content

Solid Neoplasm clinical trials at UC Health
11 in progress, 6 open to eligible people

  • Efficacy and Safety of Olaparib (MK-7339) in Participants With Previously Treated, Homologous Recombination Repair Mutation (HRRm) or Homologous Recombination Deficiency (HRD) Positive Advanced Cancer (MK-7339-002 / LYNK-002)

    open to eligible people ages 18 years and up

    This study will evaluate the efficacy and safety of olaparib (MK-7339) monotherapy in participants with multiple types of advanced cancer (unresectable and/or metastatic) that: 1) have progressed or been intolerant to standard of care therapy; and 2) are positive for homologous recombination repair mutation (HRRm) or homologous recombination deficiency (HRD).

    at UCSF

  • Experimental PET Imaging Scans Before Cancer Surgery to Study the Amount of PET Tracer Accumulated in Normal and Cancer Tissues

    open to eligible people ages 18 years and up

    This phase I trial studies a new imaging technique called FAPi PET/CT to determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulate in normal and cancer tissues in patients with non-prostate cancer. The research team also want to know whether what they see on PET/CT images represents the tumor tissue being excised from the patient's body. The research team is also interested to investigate another new imaging technique called PSMA PET/CT. Participants will be invited to undergo a second PET/CT scan, with the PSMA tracer (68Ga-PSMA-11). This is not required but just an option for volunteer patients. Patients can decide to have only the FAPI PET/CT scan. The PET/CT scanner combines the PET and the CT scanners into a single device. This device combines the anatomic (body structure) information provided by the CT scan with the metabolic information obtained from the PET scan. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of, in the case of this research, 68Ga-PSMA-11 and 68Ga-FAPi. Because some cancers take up 68Ga-PSMA-11 and/or 68Ga-FAPi it can be seen with PET. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs where it occurs in patient's body. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors. The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers. PSMA stands for Prostate Specific Membrane Antigen. This name is incorrect as PSMA is also found in many other cancers. The function of PSMA is not well understood but imaging studies have shown that PSMA can be detected with PET in many non-prostate cancers. Imaging FAP with PET/CT may in the future provide additional information about various cancers.

    at UCLA

  • Larotrectinib in Treating Patients With Previously Untreated TRK Fusion Solid Tumors and TRK Fusion Relapsed Acute Leukemia

    open to eligible people ages up to 30 years

    This phase II trial studies the side effects and how well larotrectinib works in treating patients with previously untreated TRK fusion solid tumors and TRK fusion acute leukemia that has come back. Larotrectinib may stop the growth of cancer cells with TRK fusions by blocking the TRK enzymes needed for cell growth.

    at UCSF

  • Nanoparticle Albumin-Bound Rapamycin, Temozolomide, and Irinotecan Hydrochloride in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors

    open to eligible people ages 12 months to 21 years

    This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may work better in treating pediatric patients with solid tumors.

    at UCSF

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    open to eligible people ages 18 years and up

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual 04/15/2019) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual 04/15/2019) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual 3/15/2019) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer 36. MetaPLASTIC carcinoma (of the breast) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease 40. Peritoneal mesothelioma 41. Basal cell carcinoma 42. Clear cell cervical cancer 43. Esthenioneuroblastoma 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    at UC Davis UC Irvine UCSD

  • Targeted therapy for sarcomas, Wilms tumor, rare tumors that have come back, did not respond to treatment, or are newly diagnosed

    “How well does targeted therapy, (cabozantinib-s-malate) work in treating younger patients with sarcomas and rare tumors?”

    open to eligible people ages 2-30

    This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.

    at UC Davis UCSF

  • Akt Inhibitor GSK2141795, Dabrafenib, and Trametinib in Treating Patients With Stage IIIC-IV Cancer

    Sorry, currently not accepting new patients, but might later

    This phase I/II trial studies the side effects and the best dose of Akt inhibitor GSK2141795 when given together with dabrafenib and trametinib and to see how well they work in treating patients with stage IIIC-IV cancer. Akt inhibitor GSK2141795, dabrafenib, and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving Akt inhibitor GSK2141795 with dabrafenib and trametinib may be a better treatment for cancer.

    at UCLA UCSF

  • Dabrafenib, Trametinib, and Navitoclax in Treating Patients With BRAF Mutant Melanoma or Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery

    Sorry, not currently recruiting here

    This phase I/II trial studies the side effects and best dose of dabrafenib, trametinib, and navitoclax and to see how well they work in treating patients with BRAF mutant melanoma or solid tumors that have spread to other parts of the body (metastatic) or cannot be removed by surgery (unresectable). Dabrafenib, trametinib, and navitoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UC Davis

  • Prexasertib in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of prexasertib in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or does not respond to treatment. Checkpoint kinase 1 inhibitor LY2606368 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Selumetinib and Cyclosporine in Treating Patients With Advanced Solid Tumors or Advanced or Metastatic Colorectal Cancer

    Sorry, in progress, not accepting new patients

    This phase I/Ib trial studies the side effects and best dose of selumetinib when given together with cyclosporine in treating patients with solid tumors or colorectal cancer that have spread to other places in the body and cannot be cured or controlled with treatment. Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Biological therapies, such as cyclosporine, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving selumetinib and cyclosporine may be a better treatment for solid tumors or colorectal cancer.

    at UC Davis

  • Study of MK-7162 in Combination With Pembrolizumab (MK-3475) in Adult Participants With Advanced Solid Tumors (MK-7162-002)

    Sorry, in progress, not accepting new patients

    The purposes of this study are to: 1) determine the safety and tolerability of MK-7162 when administered in combination with pembrolizumab (MK-3475), 2) establish a preliminary recommended Phase 2 dose (RP2D) of MK-7162 when administered in combination with pembrolizumab, and 3) assess the pharmacokinetics and pharmacodynamics of MK-7162 when administered in combination with pembrolizumab and other therapies to adult participants with advanced solid tumors.

    at UCLA

Last updated: